Карбон — это… карбон: описание, сфера применения, особенности и отзывы

Виды композитной пленки

Теперь надо рассмотреть карбоновый материал, принимая во внимание именно качество продукции. Разновидностей карбоновой пленки существует несколько

Отличаются они качеством, а значит, и ценой. Самый недорогой вариант — однотонная матовая или глянцевая продукция.

  1. Изделия, имеющие индекс 2D. Это тоже простая продукция, так как имитацию легко обнаружить при первом же прикосновении к поверхности. Причина — декоративный слой-рисунок, представляющий собой плоскую, двухмерную картинку. Его наносят на стандартную основу — глянцевую или матовую.
  2. Пленки класса 3D. Они имитируют не только «выразительную внешность» карбона, но и его оригинальную текстуру. Чтобы обеспечить такой эффект, в декоративный слой добавляют рельефные элементы. Результат их «работы» — видимое изменение поверхности при взгляде на материал с разных углов.
  3. Продукция 4D. Ее без преувеличения можно назвать профессиональной. Если в пленках 3D за объемность отвечают узкие рельефные полоски, то в этих изделиях их заменяют полусферические элементы, позволяющие передать текстуру оригинального карбона максимально точно. Карбон 4D практически невозможно найти в розничной продаже. Его заказывают в специализированных магазинах либо в фирмах, занимающихся тюнингом автомобилей.

Существуют еще 3 разновидности карбоновых пленок — 5D, 6D и 7D. Это самые качественные изделия, покрытые несколькими слоями лака. С одной стороны, такие пленки гарантируют полную защиту поверхностей. Однако из-за стоимости их логичнее приобретать для отделки салонов.

Ни для кого не секрет, что высокому качеству всегда соответствует такая же цена. Сохранить часть денег позволяет практичный способ. Например, детали, которые находятся на виду, декорируют дорогим видом материала — 4-7D. Другие поверхности, менее бросающиеся в глаза, закрывают более дешевыми пленками.

Отдельно надо сказать об отличиях изделий разных производителей. Для 3D-пленок, которые выпускает компания Eclat, характерна более низкая зернистость, даже в сравнении с аналогичной продукцией Graphjet и 3M. Поэтому при выборе рекомендуют всегда знакомиться с демонстрационными образцами. Только так можно объективно оценить вид и текстуру материала.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя .

3.Связующие

В качестве матриц (связующих) при изготовлении судовых конструкций используются преимущественно эпоксидные н полиэфирные синтетические смолы .

Эпоксидные смолы используются двух типов: термопласты и реактопласты. Термопласты все еще находятся в стадии разработки из-за их высокой стоимости. Чаще всего используют смолы реактопласты, которыми пропитывают углеродистые волокна, а после подвергают нагреванию. Процесс, когда волокно и смолу соединяют в матрице, называют полимеризацией .

До момента отверждения связующее остается вязкотекучей жидкостью. В определенных условиях (при повышении температуры, добавлении иницирующих реакцию веществ и т. п.) молекулы этой жидкости взаимодействуют между собой, образуя большие пространственные молекулы, вследствие чего вся масса связующего необратимо отверждается — затвердевает.

Сравнительно новым классом термостойких высокомолекулярных соединений являются полиамидные смолы. Их главное отличие от полиэфирных и эпоксидных смол заключается в более высоких механических характеристиках и большей стойкости к окислению при высоких температурах (после отверждения). Однако применение полиамидных смол требует разработки специальной технологии нзготовлення ПКМ. Основные характеристики перечисленных смол приведены в табл. 1 .

Подготовка к работе

Есть два способа наклеивания на авто: мокрый и сухой. Для поклейки сухим способом нельзя использовать мыльный раствор, и могут образоваться пузыри, которые сложно удалить. Поэтому такой способ новичкам не подойдет, им лучше выбрать мокрый способ.

Рассмотрим оба варианта оклеивания и выясним, чем они отличаются.

Мокрое оклеивание

Есть свои особенности при монтаже. Работать нужно в теплом гараже или на улице, при температуре не менее +20 градусов. В противном случае, материал может отклеиться.

Как клеить мокрым способом карбоновую пленку? Сначала моем, обезжириваем автомобиль. Помещаем пленку вместе с подложкой на место, где она будет приклеиваться, убирая лишние накладки. Фиксируем для примерки скотчем.

Для обтяжки деталей нужно оставлять припуски на загиб, после этого вырезаем готовую обведенную заготовку. С самой пленки удаляется подложка, ее пока убираем в сторону.

Итак, как правильно клеить материал? Не забываем следующее: обрабатываем мыльным раствором поверхность с распылителя. Затем прикладываем выкройку, натягивая и фиксируя его за края на то место, где он будет находиться. После этого ракелем прокатываем с середины на края, одновременно разогревая феном.

Подвороты проклеиваем клеем герметиком, а пленку протираем сухой тряпкой. Нужно дать автомобилю сутки на просыхание. В этом заключается метод влажной оклейки.

Сухое оклеивание

Так как карбоновая пленка сложно клеится на авто сухим способом, то его лучше оставить профессионалам. Обычно карбон таким способом не наносят на авто с сильной коррозией, а также с большими повреждениями.

Очищаем и обезжириваем автомобиль. После этого ждем, когда он высохнет. Потом прикладываем покрытие к авто после примерки, разглаживаем по поверхности при помощи ракеля и обдуваем промышленным феном.

Карбоновая пленка: плюсы и минусы

Прежде чем принять окончательное решение насчет целесообразности покупки, всегда знакомятся с преимуществами и недостатками материала, причем любого. Карбоновая пленка, которую приобретают для преображения средств передвижения, ноутбуков, смартфонов и мебели, не исключение.

Начинать принято с плюсов, и здесь именно главное достоинство многими воспринимается как недостаток. Речь идет о кардинальном изменении внешнего вида автомобиля. Некоторым владельцам он безумно нравится. Другие автолюбители, наоборот, не в восторге: они считают такое оформление проявлением «дурновкусия».

Преимущества «недокарбона»

Теперь о том, что действительно можно считать плюсами карбоновых пленок. К этой категории относится:

  1. Защита лакокрасочного покрытия от ультрафиолета.
  2. Шанс скрыть незначительные дефекты поверхности кузова.
  3. Простой уход за покрытием. Материал не боится ни «душа», ни автомобильных шампуней.
  4. Способность защитить автомобиль от различных видов угрозы — от механических повреждений, от мелких камней, песка, осколков стекла и т. д.
  5. Предохранение кузова от контакта с «агрессивно настроенными» веществами: например, с химикатами, предназначенными для борьбы с гололедом.
  6. Достаточно долгий срок эксплуатации: высококачественная карбоновая пленка способна служить до 5-7 лет, и не требовать замены или регулярного «латания дыр». Некоторые изделия умеют самовосстанавливаться.
  7. Практичность, удобство пленки под карбон. Сюда относится скорость преображения автомобиля (мебели, техники), сравнительная простота работы, а также быстрое снятие материала, который удаляется, не оставляя ни малейшего следа.

Главное же преимущество этих альтернативных изделий — вполне «удобоваримая» цена. Для достижения лучшего результата при оклеивании все-таки рекомендуют использовать профессиональный инструмент. И это можно считать первым минусом данной продукции.

Недостатки пленки под карбон

Второй минус — требование к объекту. Лучше оклеивать новую машину, так как невозможно предсказать, как поведет себя пленочная замена карбона. Она может дать два противоположных результата: либо успешно скрыть имеющиеся недостатки, либо сделать их более заметными.

Другие претензии в большей мере относятся к низкокачественной продукции. Главный из них — недолговечность. Такая карбоновая пленка прослужит недолго: покрытие может преподнести неприятный сюрприз уже через несколько месяцев. Чтобы не столкнуться с подобными изделиями под карбон, лучше отдавать предпочтение пленкам средней либо высокой ценовой категории.

Методы изготовления

Карбонопластики, а именно так еще называют композитные материалы из переплетенных нитей углеродного волокна, могут быть изготовлены 3-мя способами:

  • метод ручной формовки;
  • способ вакуумной формовки;
  • изготовление с выпеканием в автоклавах.

Изготовление карбоновых элементов в промышленных масштабах требует дорогостоящего оборудования, поэтому в домашних условиях карбон можно произвести только методом ручной либо вакуумной формовки.

Что нужно для изготовления

Для изготовления карбона вам потребуется:

  • углеродное волокно. Различается способом плетения и плотностью, измеряющейся в граммах на метр квадратный (гр/м2);
  • разделитель (к примеру, Loctite 770 NC). Применяется для легкого разделения карбонового элемента и матрицы после высыхания. Материал наносится на матрицу детали либо горизонтальную поверхность, на которую будет укладываться лицевой слой карбонового элемента. Лицевой слой может быть только один, если на обратной стороне не требуется создание красивой карбоновой текстуры;
  • матрица. Для создания горизонтальных деталей можно использовать кусок стекла либо зеркала. Поверхность должна быть как можно ровнее, так как все дефекты покрытия отформуются на изготовленной детали;
  • эпоксидная смола (к примеру, EPR 320);
  • отвердитель к смоле (как вариант – EPH 294);
  • инструмент для выкройки углеродного волокна. Можно использовать обычные ножницы, но будьте готовы к тому, что резка волокна быстро затупит инструмент. Если планируете изготавливать карбоновые детали серийно, рекомендуем купить электроножницы (эффективность продемонстрирована на видео).

Метод ручной формовки

Методика производства достаточно проста:

  • поверхность матрицы очищается от всех загрязнений;
  • равномерно по всех поверхности, в несколько тонких слоев наносится разделитель;
  • на поверхность наносится слой приготовленной смолы;
  • укладывается слой углеродистой ткани;
  • волокно пропитывается эпоксидной смолой. Между первым слоем и матрицей, а также между последующими слоями не должно быть пузырей воздуха. Распределять смолу можно обычной кисточкой, пузыри воздуха удобно выгонять валиком;
  • накладывается следующий слой, после чего процедура повторяется до набора необходимой толщины детали;
  • после укладки финального слоя горизонтальные детали можно спрессовать ответным куском стекла либо зеркала. В таком случае обе стороны детали получат глянцевую поверхность и четкую структуру карбона.

Поскольку стоимость углеродного волокна нельзя назвать демократичной, между первым и последним слоем углеродной ткани можно укладывать стекловолокно. Стеклоткань не должна быть грубой, чтобы не нарушать финальную форму.

Метод вакуумной формовки

Помимо стандартного набора материалов и инструментов, для изготовления карбоновых элементов методом вакуумной инфузии вам потребуются:

  • жертвенная ткань;
  • проводящая сетка. Используется для распределения смолы и отвода воздуха;
  • вакуумная пленка. Использовать обычную пленку нельзя, так как она не способна выдержать высокую температуру и не обладает высокой способностью к растяжению;
  • вакуумный насос. Для изготовления небольших деталей подойдет простой одноступенчатый масляный насос;
  • герметизирующий жгут;
  • спиральная трубка для подачи смолы и забора воздуха;
  • вакуумная трубка;
  • зажимы для трубок (струбцины);
  • вакуумная ловушка. Используется в качестве уловителя эпоксидной смолы, попадание которой в вакуумный насос выведет его из строя. Соорудить ловушку можно своими руками из подручных средств.

Технология вакуумной инфузии предполагает сборку «бутерброда» из карбоновой ткани и помещения его в герметичное пространство. После укладки происходит откачка воздуха и подача к заготовке смолы. Пропитанную смолою ткань оставляют под вакуумом на 20-30 минут, герметизируя трубки подачи смолы и отбора воздуха. Для начального отвержения достаточно 24 часа и комнатной температуры, после чего деталь из карбона следует отправить на постотвержение в духовой шкаф. Расписывать метод вакуумной инфузии в деталях мы не стали, так как процесс подробно показан на видео.

Удилище из Карбона? Развенчиваем мифы!

ВАЖНО !

Большинство удилищ, употребляемых сегодня серьезными рыболовами, изготовлено из углепластика. Все о нем говорят, но мало кто в нем разбирается. Что же это за штука?

Углепластики — это некоторые виды полимерных композиционных материалов (известных также как полимерные композиты и армированные пластики), то есть материалов, в которых полимерное связующее (матрица) армировано (усилено) наполнителями различной природы.

По структуре наполнителя углепластики подразделяют на:

— волокнистые (армированные волокнами и нитевидными кристаллами);

— слоистые (армированные пленками и т.п.);

— дисперсноармированные (с наполнителем в виде тонкодисперсных частиц)

Говоря об углепластике применительно к удилищам, мы имеем в виду волокнистый композиционный материал из полимерного связующего, армированного углеволокном.

По-английски углеволокно будет «carbon fibre», а интересующий нас материал — «carbon fibre-reinforced polymer (CFRP)».

Но длинные составные английские термины очень часто сокращаются до одного-двух слов, и в обиходе углепластик для удилищ обычно называют «carbon fibre» (по-американски — «carbon fiber») или просто «carbon».

Это сокращение сыграло с рыболовами злую шутку, сосредоточив их внимание на свойствах углеволокна. Но удилища-то делаются вовсе не из чистого углеволокна, а из углепластика, и поэтому свойства использованного волокна — вовсе не единственный и даже не главный фактор, влияющий на характеристики удилища

Кстати, в Америке и в Азии углеволокно нередко называют графитом (graphite), что, строго говоря, неправильно. Вроде бы, ничего страшного, но это вносит еще большую неразбериху в терминологию и вконец запутывает теоретически неподкованных рыболовов, позволяя маркетологам легко морочить им голову. Вот все и говорят об удилищах «из угля», «из карбона», «из графита», а о связующем совсем забывают.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.

В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.

В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение

В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.

В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.

В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.

Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.

В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.

Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое .

Что такое карбон

Карбон – это тканый материал, нити которого превосходят по прочности алюминий. При производстве они особым образом обрабатываются и формуются.

На основе материала производят следующие конструктивные элементы:

— рама;

— вынос руля;

— руль;

— подседельный штырь.

Это основные компоненты, которые часто подбираются для самостоятельной сборки или модернизации байка.

Есть и другие элементы из композита, но в основном это детали, воспринимающие нагрузки в продольном и поперечном направлении.

В чем плюсы карбоновой рамы

Выделяют несколько преимуществ карбона в сравнении с металлом:

— снижение веса конструкции, при прочих равных обычная рама горного велосипеда оказывается легче до 600 гр;

— прочность. Зависит от положения нитей, например, на перья действуют продольное напряжение, а поперечное снижено, потому нити укладываются вдоль. На каждом конструктивном элементе положение нитей подбирается индивидуально, в зависимости от особенностей нагрузки;

— гашение вибраций. Материал отлично перераспределяет вибрации и удары от неровностей дороги по всей своей поверхности. Однако, на горном велосипеде с амортизаторами и приспущенными шинами эффект будет заметно слабее, чем на дорожнике. Особенно заметен эффект при установке руля и выноса;

— даже при длительной эксплуатации композит не теряет своей жесткости. Кроме того, структура не накапливает внутренние напряжения и усталость, то есть структура карбона и его характеристики не зависит от времени.

Усталость металла свойственна алюминиевым и стальным рамам, это свойство подразумевает накопление внутренних напряжений в структуре при длительной эксплуатации;

— ремонтопригодность. При повреждении детали достаточно просто восстановить, причем, восстановленный участок практически не теряет несущих характеристик. Поломки могут происходить при падениях и ударах, карбон плохо держит точечные удары, потому может легко треснуть или даже проломиться.

В чем минусы карбоновой рамы

Недостатки:

— несмотря на свои качества, карбон может ломаться, особенно при точечных ударных воздействиях, не соответствующих положениям нитей. Точечные удары часто приводят к повреждениям, вплоть до серьезных поломок рамы;

— негативным аспектом является цена, один только вынос руля может стоить 6-7 тысяч рублей. Однако, карбон на велосипеде позволяет сэкономить в пределах 1-1,5 кг;

— прикипание. Если неподвижно установить детали из карбона, например, подседельный штырь в раме, то через некоторое время они буквально сливаются в целое. Разъединить их без поломок очень сложно, а для предотвращения этой проблемы необходимо использовать специальные смазки.

Какой бренд выбрать

Перед покупкой рулона стоит внимательно изучить предложения на рынке и отзывы покупателей. Эти два критерия подскажут, на какой марке остановить свой выбор. Лучшим решением будет приобрести так называемый «самый покупаемый товар». Он надежен и выгоден. В противном случае водители не оклеивали бы свои авто такой пленкой карбон.

Среди описанных вариантов специалисты рекомендуют покупать марку 3M. Ее можно встретить в любом специализированном магазине. Вдобавок, ассортимент пленок японского производства всегда больше, чем любых других брендов.

Если же бюджет не большой – то можно оклеить элементы кузова 3D материалом Graphjet.

Состав и физические свойства

Важнейшей из характеристик углеволокна остается его исключительная тепловая стойкость. Даже если вещество прогрето до 1600 — 2000 градусов, то при отсутствии кислорода в окружающей среде его параметры не поменяются. Плотность этого материала, наряду с обычной, бывает и линейной (измеряется в так называемых тексах). При линейной плотности 600 tex масса 1 км полотна будет составлять 600 г

Критически важное значение во многих случаях имеет и модуль упругости материала, или, как говорят иначе, модуль Юнга

У высокопрочного волокна этот показатель составляет от 200 до 250 ГПа. Высокомодульное углеволокно, сделанное на базе ПАН, имеет модуль упругости примерно 400 ГПа. У жидкокристаллических решений этот параметр может варьироваться от 400 до 700 ГПа. Модуль упругости вычисляют, отталкиваясь от оценки его величины при растягивании отдельных графитовых кристаллов. Ориентировку атомных плоскостей устанавливают с использованием рентгеноструктурного анализа.

По умолчанию поверхностное натяжение составляет 0,86 Н/м. При обработке материала для получения металлокомпозитного волокна этот показатель вырастает до 1,0 Н/м. Определять соответствующий параметр помогает измерение по способу капиллярного подъема. Температура плавления волокон на базе нефтяных пеков равна 200 градусам. Прядение происходит примерно при 250 градусах; температура плавления других видов волокон прямо зависит от их состава.

Максимальная ширина углеродных полотен зависит от технологических требований и нюансов. У многих производителей она составляет 100 или 125 см. Что касается осевой прочности, то она будет равна:

  • у высокопрочных изделий на базе ПАН от 3000 до 3500 МПа;
  • у волокон со значительным удлинением строго 4500 МПа;
  • у высокомодульного материала от 2000 до 4500 МПа.

Теоретические расчеты устойчивости кристалла при растягивающем усилии в сторону атомной плоскости решетки дают оценочную величину 180 ГПа. Ожидаемый предельный практический показатель равен 100 ГПа. Но в экспериментах пока не подтверждено наличие уровня более 20 ГПа. Реальная прочность углеволокна лимитируется его механическими дефектами и нюансами производственного процесса. Установленная в исследованиях на практике прочность к растяжению участка длиной 1/10 мм составит от 9 до 10 ГПа.

Отдельного внимания заслуживает карбоновое волокно T30. Этот материал применяется в основном в получении удилищ. Такое решение отличается легкостью и отличным балансом. Индекс Т30 обозначает модуль упругости 30 тонн.

Действенные способы нанесения на автомобиль плёнки из карбона

  • Способ сухого нанесения. Зачастую используется в крупных салонах по обслуживанию автотранспортных средств. В данном случае металлическая основа не обрабатывается мыльным раствором, соответственно, карбоновое покрытие должно быть идеально наклеено с первого раза, так как любые погрешности, допущенные при работе, исправить не удастся.
  • Способ мокрого нанесения. Считается более простым в исполнении. Предварительно смоченная металлическая поверхность значительно облегчает процесс оклейки карбоном авто. Такую работу вполне реально осуществить своими руками, что считается предпочтительным для многих людей.


Рулон карбоновой плёнки

Преимущества и недостатки карбоновой пленки

Пленку, имитирующую текстуру карбона, большинство покупателей выбирают за ее способность придавать автомобилю нестандартный внешний вид. При этом такую способность трудно назвать однозначным  преимуществом или недостатком, ведь оценка эстетических параметров – дело вкуса. Одни автолюбители считают такой тюнинг отличным решением, другие ругают их за «дурной вкус».

Однако у пленочного покрытия «под карбон» есть и объективные преимущества:

  • Полимерный слой задерживает солнечное ультрафиолетовое излучение, не позволяя ему разрушать лакокрасочное покрытие.
  • Прочное покрытие способно защитить краску от удара мелких камушков (при езде по гравийной дороге) и других небольших механических повреждений.
  • Покрытие создает защитный слой, предотвращающий контакт кузова с едкими химикатами, применяемыми для борьбы с гололедицей. Это значит, что кузов меньше страдает от коррозии.
  • Материал хорошо моется, не боится стандартных автомобильных шампуней. Перепады температуры также неопасны. Качественная пленка не требует замены в течение 5–7 лет.
  • Материал легко клеить (но для достижения оптимального результата все же нужен профессиональный инструмент и опыт его использования). Снимается старое покрытие также без особых проблем.

Есть у карбоновой пленки для авто и некоторые недостатки. Главный из них – риск столкнуться с низким качеством. Недостаточно качественный материал быстро теряет вид, и покрытие может прийти в полную негодность уже после 2–3 месяцев с момента нанесения. Ожидать полного раскрытия всех плюсов полимера «под карбон» стоит при использовании изделий средней и высшей ценовой категории.

Углепластик

Состав и физико-механические свойства углепластиков.

Рабочая температура углепластиков определяется их связующей. Наиболее высокие рабочие температуры имеют стеклопластики на полиимидной основе.

Состав и физико-механические свойства углепластиков.

Анизотропия свойств углепластиков выражена еще более резко, чем у стеклопластиков.

Небольшой слой углепластика также создает достаточный экранирующий эффект. Поэтому в целях экономии дорогостоящего углеродного волокна применяют многослойные материалы, сочетающие слои стекло — и углепластиков, а также композиции на основе смешанных наполнителей. Несмотря на высокую стоимость, углеродные волокна являются перспективным видом наполнителей для электропроводящих пластмасс.

Изделия из углепластиков получают такими методами, как намотка и прессование.

Отличительной чертой углепластиков является также их высокая статическая и динамическая выносливость, достаточно высокая тепло -, водостойкость и химическая стойкость. По сравнению, например, со стеклопластиками они-обладают повышенной в полтора-два раза теплопроводностью.

Диаграмма изгибающая нагрузка — удлинение алюминиевой пластины толщиной 1 5 мм до ( / и после ( 2 армирования двумя пластинами углепластика толщиной 0 25 мм.| Диаграмма изга-бающее напряжение ов — деформация пластины из стеклопластика, толщиной 2 2 мм ( 1 и пластины из стеклопластика толщиной 1 5 мм. армированной двумя пластинами углвпласти-а толщиной 0 2 мм ( 2.

Области применения углепластиков постоянно расширяются , чему способствует использование, так называемых, комбинированных материалов. Они составляют особый класс конструкций, объединяющих углепластики с другими материалами, например стеклопластиками, алюминием, деревом и пр.

Ценное свойство углепластиков — их высокая демпфирующая способность и вибропрочность. По этим показателям углепластики превосходят металлы и некоторые другие конструкционные материалы. Регулировать демпфирующую способность можно, изменяя угол между направлениями армирования и приложения нагрузки.

Химическая стойкость углепластиков позволяет применять их в производстве кислотостойких насосов, уплотнений. Углеродные волокна имеют низкий коэффициент трения. Это дает возможность использовать их в качестве наполнителя для различных связующих, из которых делают подшипники, прокладки, втулки, шестерни.

При нагревании углепластика с внутренним напряжением и неравновесной деформацией различного рода связи, удерживающие структурные образования композиции в напряженном состоянии, ослабевают или разрушаются.

Антифрикционные свойства углепластиков при трении со смазыванием водой.

Общим для углепластиков является высокое содержание порошковых углеродных наполнителей, а также смолы горячего отверждения в качестве связующего. В материалах АМС-1 и АМС-3 связующим является эпоксикремний — органическая смола, а в материале АФ-ЗТ — резольная фенолформальдегид-ная смола. Высокую износостойкость углепластикам придает порошок нефтяного кокса, являющийся основным наполнителем. Он создает неупорядоченную структурную решетку, более износостойкую, чем у искусственных графитов. На рис. 18 показаны скорости изнашивания и коэффициенты трения углепластиков и графита АГ-1500-СО5, полученные автором на машине трения МИ-1М. Все углепластики имеют более высокие антифрикционные свойства, чем графит АГ-1500-СО5, широко используемый для подшипников сухого трения. В табл. 16 приведены антифрикционные свойства материалов, полученные при испытаниях на машине МИ-1М при трении по стали 95X18, давления 20 кгс / см2, скорости скольжения 1 м / с со смазыванием водой. В качестве смазки могуг применяться также бензин, керосин, масло, спирт, морская вода и другие жидкости, в которых углепластики химически стойки. Допускаемое давление со смазыванием водой составляет 40 кгс / см2, скорость скольжения 10 м / с. При трении без смазки допускаемые давления 10 — 20 кгс / см2, скорость скольжения 1 5 — 3 м / с, температура в зоне трения 170 — 180 С.

Зависимость механических свойств углепластика от межслоевого.

Делаем все сами

Оклейка двери автомобиля карбоновой пленкой Если все – таки, решились провести оклейку бампера карбоном своими руками и, чтобы результат проведенной работы принес лишь положительные эмоции, придерживайтесь следующих рекомендаций:

  • проводить работы нужно в сухом закрытом помещении, если же работы будут проводиться на открытой площадке, главным условием является безветренная сухая погода. Температура воздуха должна превышать 20 градусов выше нуля;
  • фен, которым нагревают пленку, нужно держать на расстоянии 20-25 см и постоянно менять направление горячего воздуха;
  • бумажную подложку пленки нельзя мочить, иначе легко снять клеящийся слой;
  • обязательно обезжирьте и тщательно очистите поверхность автомобиля. Для обезжиривания используйте Уайт-спирит, после чего не забудьте с помощью фена высушить оклеиваемую поверхность.

Одной из самых важных подготовительных работ является правильный расчет необходимого материала, учитывайте необходимость зазора в 10 – 15 см.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector