Мощность

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

\

\( F \left( H \right) \) – сила, перемещающая тело;

\( S \left( \text \right) \) – перемещение тела под действием силы;

\( \alpha \) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ \(\vec\) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

\

\[ \large A = \Delta E_

\]

\

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

\

Формулу можно записать в скалярном виде:

\

\( F \left( H \right) \) – сила, перемещающая тело;

\( \displaystyle v \left( \frac> \right) \) – скорость тела;

\( \alpha \) – угол между вектором силы и вектором скорости тела;

Когда векторы \(\vec\) и \(\vec\) параллельны, запись формулы упрощается:

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД – коэффициент полезного действия. Обычно обозначают греческим символом \(\eta\) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент \(\eta\) для какого-либо устройства, механизма или процесса.

\( \large A_> \left(\text \right)\) – полезная работа;

\(\large A_> \left(\text \right)\) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

Величина \(\eta\) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

Источник

Работа и мощность при вращательном движении

Изменение кинетической энергии механической системы равно алгебраической сумме работ всех внешних и внутренних сил, действующих на эту систему

dT = dAвнеш + dAвнутр . (1.55)

При вращении твердого тела относительно неподвижной оси элементарная работа всех внешних сил, действующих на твердое тело, равна приращению только кинетической энергии, так как его потенциальная энергия при этом не меняется. Следовательно

.

С учетом того, что Iz dw = Mz dt , получим

dA = Mz w dt = Mz dj . (1.56)

Полная работа внешних сил при повороте твердого тела на некий угол j равна:

В случае, если Mz=const, то последнее выражение упрощается:

Таким образом,работа внешних сил при вращательном движении твердого тела вокруг неподвижной оси определяется действием момента Mz этих сил относительно данной оси.

При вращательном движении твердого тела относительно неподвижной оси мощность определяется выражением

Примеры решения задач на работу и мощность

Пример 1.Потенциальная энергия частицы имеет вид

аМN

Решение

Используя выражение, связывающее потенциальную энергию частицы с силой, действующей на неё, получим

Работа сил потенциального поля равна убыли потенциальной энергии

По известным координатам точек M и N находим

Пример 2. Частица совершает перемещение в плоско- сти ХУ из точки с координатами (1,2) м в точку с координатами (2,3) м под действием силы

Н.

Решение

Элементарная работа, совершаемая силой

Работа при перемещении частицы из точки 1 в точку 2 определится интегрированием

Подставляя числовые значения, получим

Пример 3.Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновен- ную мощность на высоте h/2.

Решение

Средняя мощность Nср, развиваемая силой тяжести на пути h, определяется выражением

Запишем выражение координаты y(t) тела от времени при свободном падении с высоты h с нулевой начальной скоростью:

где g – ускорение свободного падения.

Полное время t падения тела с высоты h определим из этого выражения при условии y = 0:

Среднее значение скорости равно

Мгновенная мощность, развиваемая силой тяжести на высоте h/2, равна

Расстояние, пройденное телом за промежуток времени t1, равно

откуда

Мгновенная скорость υ1тела на высоте h/2 , равна

Выполняя вычисления, получим

Пример 4.Маховиквращается по закону, выражаемому уравнением

АрадВрад/срад/с 2 .Iкг·м 2.

Решение

Средняя мощность по определению

,(1)

где t- время торможения до полной остановки, А- работа, совершаемая за это время.

Работа при вращательном движении

С учётом основного уравнения динамики вращательного движения M=Iε, получим

где

t

Время торможения до остановки найдём из условия

откуда

С учётом значений t, найдём

После интегрирования (2) получим абсолютное значение работы сил торможения

Подставляя (3) в (1) найдём

Законы сохранения

Любое тело (или совокупность тел) представляет собой, по существу, систему материальных точек. Состояние системы характеризуется одновременным заданием координат и скоро- стей всех ее частиц.При движении системы ее состояние изменяется со временем. Существуют, однако, такие функции координат и скоростей, образующих систему частиц, которые способны сохраняться во времени. К ним относятся энергия, импульс и момент импульса.

В соответствии с этим имеют место три закона сохране- ния – закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса, которые выполняются в замкнутых системах.

Система называется замкнутой, если она не обменивается с другими телами, не входящими в эту систему, соответ- ственно энергией, импульсом, моментом импульса. Законы сохранения энергии, импульса и момента импульса можно получить исходя из основных уравнений динамики, однако, следует иметь в виду, что эти законы обладают гораздо большей общностью, чем законы Ньютона, и должны рас- сматриваться как самостоятельные фундаментальные принци- пы физики, относящиеся к основным законам природы.

Законы сохранения являются эффективным инструмен- том исследования. С помощью законов сохранения можно без решения уравнения движения получить ряд важнейших данных о протекании механических процессов.

Закон сохранения импульса

Импульс системы

i

Изменение импульса системы, согласно законам динамики, равно результирующему вектору импульса внешних сил:

В соответствии с этим уравнением, импульс системы может изменяться под действием только импульса внешних сил. Импульсы внутренних сил не могут изменить импульс системы. Отсюда непосредственно вытекает условие замкнутости системы и закон сохранения импульса импульс замкнутой механической системы остается постоянным:

Источник

Электрическая мощность

В этой области не важны тяжесть предметов, сила трения, другие механические термины и определения. Тем не менее, суть рассматриваемой физической величины остается неизменной, подобны принципы отдельных вычислений.

Можно применить для расчета мгновенной мощности формулу:

где:

  • (a-b) – обозначают энергию, затраченную на перемещение заряда (q) из одной в другую точку;
  • А – выполненная в ходе этого процесса работа.

Если взять все заряды (Q), напряжение в контрольных точках (U), нетрудно вычислить суммарную мощность:

P = (U/ Δt) * Q = U * Q/ Δt = U *I.

Последнее преобразование основано на классическом определении тока (количество зарядов, протекающих по соответствующему проводнику за определенное время).

Для пассивных цепей можно пользоваться законом Ома и соответствующими формулами без дополнительных коррекций. Учитывают (при наличии) источник электродвижущей силы (направление движения токов).

При подключении техники к источникам переменного тока вычисления усложняются. Приходится интегрировать мгновенные значения с учетом определенных периодов, частоты и формы сигналов. На практике часто решают задачи по вычислению мощности потребителей, подключенных к источнику питания с синусоидальным током (напряжением).

Активная составляющая энергии в этом случае будет зависеть от фазового сдвига. Значение вычисляют по формуле:

Pa = U * I * cosϕ (для 220V).

При работе с трехфазными источниками пользуются измененным вариантом выражения:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная переменная потребляется и возвращается в источник питания. Для расчета берут следующую зависимость базовых параметров:

Полная мощность:

Для чего это нужно?

Такие расчеты полезны всем. Мы все время планируем свой день и перемещения. Имея дачу за городом, есть смысл узнать среднюю путевую скорость при поездках туда.

Это упростит планирование проведения выходных. Научившись находить эту величину, мы сможем быть более пунктуальными, перестанем опаздывать.

Вернемся к примеру, предложенному в самом начале, когда часть пути автомобиль проехал с одной скоростью, а другую — с иной. Такой вид задач очень часто используется в школьной программе. Поэтому, когда ваш ребенок попросит вас помочь ему с решением подобного вопроса, вам будет просто это сделать.

Сложив длины участков пути, вы получите общее расстояние. Поделив же их значения на указанные в исходных данных скорости, можно определить время, потраченное на каждый из участков. Сложив их, получим время, потраченное на весь путь.

Задачи на среднюю скорость (далее СК). Мы уже рассматривали задания на прямолинейное движение. Рекомендую посмотреть статьи » » и » » . Типовые задания на среднюю скорость это группа задач на движение, они включены в ЕГЭ по математике и такая задача вполне вероятно может оказаться перед вами в момент самого экзамена. Задачки простые, решаются быстро.

Смысл таков: представьте объект передвижения, например автомобиль. Он проходит определённые участки пути с разной скоростью. На весь путь затрачивается какое-то определённое время. Так вот: средняя скорость это такая постоянная скорость с которой автомобиль преодолел бы данный весть путь за это же время То есть формула средней скорости такова:

Если участков пути было два, тогда

Если три, то соответственно:

*В знаменателе суммируем время, а в числителе расстояния пройденные за соответствующие им отрезки времени.

Первую треть трассы автомобиль ехал со скоростью 90 км/ч, вторую треть – со скоростью 60 км/ч, а последнюю – со скоростью 45 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Как уже сказано необходимо весь путь разделить на всё время движения. В условии сказано о трёх участках пути. Формула:

Обозначим весь пусть S. Тогда первую треть пути автомобиль ехал:

Вторую треть пути автомобиль ехал:

Последнюю треть пути автомобиль ехал:

Таким образом

Решите самостоятельно:

Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первый час автомобиль ехал со скоростью 100 км/ч, следующие два часа – со скоростью 90 км/ч, а затем два часа – со скоростью 80 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

В условии сказано о трёх участках пути. СК будем искать по формуле:

Участки пути нам не даны, но мы можем без труда их вычислить:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

Вычисляем скорость:

Решите самостоятельно:

Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первые 120 км автомобиль ехал со скоростью 60 км/ч, следующие 120 км — со скоростью 80 км/ч, а затем 150 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Сказано о трёх участках пути. Формула:

Протяжённость участков дана. Определим время, которое автомобиль затратил на каждый участок: на первый затрачено 120/60 часов, на второй участок 120/80 часов, на третий 150/100 часов. Вычисляем скорость:

Решите самостоятельно:

Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Путешественник переплыл море на яхте со средней скоростью 17 км/ч. Обратно он летел на спортивном самолете со скоростью 323 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Механическая работа и мощность

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений

Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Модуль силы тяжести: F тяж = mg

Работа силы тяжести: A = mgs cosα

Модуль силы трения скольжения: F тр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Модуль силы упругости: F упр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Единицы измерения

В Международной системе единиц (СИ) единицей измерения мощности является ватт (Вт), равный одному джоулю в секунду (Дж/с). В теоретической физике, астрофизике, в качестве единицы для мощности часто используют эрг в секунду (эрг/с).

Другой распространённой, но ныне устаревшей единицей измерения мощности, является лошадиная сила. В своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, «которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются».

Соотношения между единицами мощности
Единицы Вт кВт МВт кгс·м/с эрг/с л. с.(мет.) л. с.(анг.)
1 ватт 1 10−3 10−6 0,102 107 1,36·10−3 1,34·10−3
1 киловатт 103 1 10−3 102 1010 1,36 1,34
1 мегаватт 106 103 1 102·103 1013 1,36·103 1,34·103
1 килограмм-сила-метр в секунду 9,81 9,81·10−3 9,81·10−6 1 9,81·107 1,33·10−2 1,31·10−2
1 эрг в секунду 10−7 10−10 10−13 1,02·10−8 1 1,36·10−10 1,34·10−10
1 лошадиная сила (метрическая) 735,5 735,5·10−3 735,5·10−6 75 7,355·109 1 0,9863
1 лошадиная сила (английская) 745,7 745,7·10−3 745,7·10−6 76,04 7,457·109 1,014 1

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

\( E_ \left(\text \right) \) – начальная потенциальная энергия яблока;

\( E_ \left(\text \right) \) – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

\[ \large E_

= m \cdot g \cdot h\]

\( m \left( \text\right) \) – масса яблока;

\( h \left( \text\right) \) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

\

Потенциальная энергия яблока на столе

\

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

\[ \large \Delta E_

= E_ — E_ \]

\[ \large \Delta E_

= 2 – 6 = — 4 \left(\text \right) \]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!. Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

\) дополнительно допишем знак «минус».

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы \(\displaystyle F_>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

\( E_ \left(\text \right) \) – начальная кинетическая энергия машины;

\( E_ \left(\text \right) \) – конечная кинетическая энергия машины;

\( m \left( \text\right) \) – масса автомобиля;

\( \displaystyle v \left( \frac>\right) \) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

\

\

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

\

\

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

Определение и формулы мощности

Мощностью некоторой силы является скалярная физическая величина, которая характеризует скорость произведения работы данной силой. Мощность часто обозначают буквами: N, P.

В том случае, если за равные малые промежутки времени выполняется разная работа, то мощность является переменной во времени. Тогда вводят мгновенное значение мощности:

где $\delta A$ – элементарная работа, которую выполняет сила, $\Delta t$ – отрезок времени в течение, которого данная работа была выполнена. Если мгновенная мощность не является постоянной величиной, то выражение (1) определяет среднюю мощностьза время $\Delta t$.

Мощность силы можно определить как скалярное произведение силы на скорость, с которой движется точка приложения рассматриваемой силы:

где $F_$ – проекция силы $\bar$ на направление вектора скорости ( $\bar$).

При поступательном движении некоторого тела, имеющего массу m под воздействием силы $\bar$ мощность можно вычислить, применяя формулу:

В общем случае произвольного перемещения твердого тела суммарная мощность есть алгебраическая сумма мощностей всех сил, которые действуют на тело:

где $\bar_$ – скорость перемещения точки, к которой приложена сила $\bar_$.

В случае поступательного движения твердого тела со скоростью $\bar$ мощность можно определить при помощи формулы:

где $\bar$ – главный вектор внешних сил.

Если твердое тело совершает вращение вокруг точки О или вокруг неподвижной оси, которая проходит через точку О, то формулой для счет мощности можно считать выражение:

где $\bar$ – главный момент внешних сил по отношению к точке О, $\bar$ – мгновенная угловая скорость вращения тела.

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0 о , то cosα = 1.
  2. Если 0 о o , то cosα > 0.
  3. Если α = 90 о , то cosα = 0.
  4. Если 90 о o , то cosα о , то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180 о ). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0 о ). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Электрическая мощность

Электри́ческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

Мгновенная электрическая мощность P(t){\displaystyle P(t)} участка электрической цепи:

P(t)=I(t)⋅U(t){\displaystyle P(t)=I(t)\cdot U(t)\,}
где I(t){\displaystyle I(t)} — мгновенный ток через участок цепи;
U(t){\displaystyle U(t)} — мгновенное напряжение на этом участке.

При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия:

  • , равной среднему за период значению мгновенной мощности,
  • , которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно,
  • , вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0 о , то cosα = 1.
  2. Если 0 о o , то cosα > 0.
  3. Если α = 90 о , то cosα = 0.
  4. Если 90 о o , то cosα о , то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180 о ). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0 о ). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле (1) A = Ps cos α, где α – угол между направлением действия силы и направлением перемещения.

При α = 90° cos α = cos 90° = 0 и A = 0, т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается: (1′) A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин, § 83): (2) AR = ∑ Ai, т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, AR=0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид (2′) ∑ Ai = 0, т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз – сила тяжести – движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1′) вычислить ее работу.

2. Не определяя непосредственно силы P, определить Ap – работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле (3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то (3′) N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = vср – средняя скорость и тогда формула (2′) выпажает среднюю мощность Nср = Pvср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ (4) η = Aпол/A, где Aпол – полезная работа; A – вся произведенная работа, или как отношение соответствующих мощностей: (4′) η = Nпол/N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.): 1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами N (кВт) = 1,36 N (л. с.) N (л. с.) = 0,736 N (кВт).

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector