Стабилизаторы напряжения или как получить 3,3 вольта
Содержание:
- Стабилизатор напряжения 12 вольт
- Разновидности 12В стабилизаторов
- Двухполупериодный выпрямитель со средней точкой
- Блок питания для автомагнитолы
- Компоновка прибора
- Технические характеристики TL431
- Многофункциональный прибор
- Основные способы понижения
- Климатические условия
- Что требуется для установки подсветки
- Детали для самостоятельного создания устройства
- Подбор готового трансформатора
- Регулируемый стабилизатор напряжения для зарядного устройства
- Схема подключения на базе LM2940CT-12.0
- Включение через габариты или ближний свет
- Вы здесь
Стабилизатор напряжения 12 вольт
Главная > Теория > Стабилизатор напряжения 12 вольт
Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.
Стабилизация с помощью стабилитрона
Классический стабилизатор
Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:
- Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
- Последовательный – включение элемента регулировки последовательно с нагрузкой.
Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.
Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.
Линейный стабилизатор с транзистором
В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.
Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции
Интегральный стабилизатор
Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.
Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.
Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:
- Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
- Входное напряжение – до 30 В;
- Выходной ток – до 1А;
- Встроенная защита от перегрузки и короткого замыкания.
Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.
Включение микросхемы 7812
Конденсатор фильтров рекомендуется устанавливать не далее 30 мм от выводов микросхемы. Если выходного тока 1 ампер недостаточно, можно установить дополнительный транзистор.
Увеличение выходного тока
Схема имеет параметры стабилизации, аналогичные применённой микросхеме.
В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.
Разновидности 12В стабилизаторов
Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:
Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.
Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов. Импульсная стабилизация контролируется ШИМ-контроллером
Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку
Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.
К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.
Классический стабилизатор
Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.
Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:
при подаче на стабилитрон Uвх 12 В он открывается и удерживает заявленное напряжение постоянным.
Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя
Интегральный стабилизатор
Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.
Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.
Двухполупериодный выпрямитель со средней точкой
Схема двухполупериодный выпрямитель со средней точкой
Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:
График двухполупериодного выпрямителя
Блок питания для автомагнитолы
У вас ведь по-любому завалялась старая магнитола где-нибудь в гараже?
Почему бы не сделать музыку в гараж?
Техническое задание
Да, вопрос решается с помощью небольшого автомобильного аккумулятора. Но его работа ограничена по времени, да и заряжать его каждый раз – ну уж извините. Поэтому в данной статье пойдет речь о том, как же собрать своими силами простейший высоко стабилизированный блок питания для магнитолы, работающий от сети 220 Вольт.
Итак, наша главная задача – получить из переменного напряжения 220 Вольт, которое у вас в розетке, постоянное напряжение в 14 Вольт. Думаю, задача ясна и понятна. Но есть маленькое НО: магнитола + колонки + громкость на всю катушку = очень энергопотребляемое устройство. Она у нас будет “кушать” силу тока в несколько Ампер. По моим замерам среднее значение – это 1,5-2,5 Ампера, а при глубоком басе и все 5 Ампер. Все зависит от того, как вы выставите эквалайзер на магнитоле.
Следовательно, нам надо создать такое устройство, которое бы держало напряжение в определенном диапазоне – то есть от 13 и до 14 Вольт и выдавало приемлемую силу тока.
Схема и описание
Итак, схему в студию!
Но… подождите-ка. Чем-то напоминает эта схема ту самую схему Простого блока питания. Ну да, это и есть та самая схема ;-). Просто здесь есть свои нюансы. Главным козырем в этой схемы является регулятор стабилизатор LM350 или LM338. В чем же фишка этих стабилизаторов? И почему мы заменили старую добрую LM317?
Компоновка прибора
После того, как все узлы будут подобраны, или будет присутствовать четкое представление о том, какими они будут, можно приступать к компоновке прибора
Также важно понимать, каким будет будущий корпус устройства. Можно подобрать готовый, можно сделать самому при наличии материалов и навыков
Особых правил компоновки узлов внутри корпуса нет. Но желательно расположить узлы так, чтобы они соединялись проводниками последовательно, как на схеме, и по кратчайшему расстоянию. Выходные клеммы лучше расположить на стороне, противоположной сетевому кабелю. Выключатель питания и предохранитель лучше закрепить на задней стенке устройства. Для рационального использования межкорпусного пространства часть узлов можно установить вертикально, но диодный мост лучше закрепить горизонтально. При вертикальном монтаже конвекционные потоки горячего воздуха от нижних диодов будут обтекать верхние элементы и дополнительно их нагревать.
Собрать источник питания постоянного тока с фиксированным питанием несложно. Это по силам мастеру средней руки, нужны лишь элементарные познания в электротехнике и минимальные навыки монтажа.
Технические характеристики TL431
Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:
- катодное выходное напряжение (VKA), по отношению к выводу анода до 37 В;
- возможные значения токов: для непрерывного катодного на выходе (IKA) от –100 мА до 150 мА; для обратного на входе от -50 мА до 10 мА;
- типовой импеданс до 0,22 Ом;
- рассеиваемая мощность (для разных типов упаковки) PD: 0.8 Вт (SOT-89); 0,78 Вт (ТО-92); 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25);
- температура кристалла (TJ): рабочая: 0…+70 ОС; -40 … +125ОС (для некоторых автомобильных версий); максимальная (TJmax) до +150ОС;
- тепловое сопротивление корпуса RθJC: 97ОС/Вт (D); 156 ОС/Вт (LP); 28 ОС/Вт (KTP); 127ОС/Вт (P); 52ОС/Вт (PK); 149ОС/Вт (PW);
- температура хранения: -65… +150 ОС.
Многофункциональный прибор
Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.
Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.
Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:
- В сопроводительной документации к микросхеме.
- В datasheet.
- В стандартной схеме включения.
Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.
Основные способы понижения
Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.
На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».
Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.
Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.
Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:
Как сделать стабилизатор тока для светодиодов?
- С помощью балластного конденсатора понижение напряжения.
- При помощи балластного резистора гасится избыточное напряжение.
- Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.
Балластный конденсатор
Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.
Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:
В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.
Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.
Климатические условия
Большинство рыночных стабилизатором рассчитаны на работу при температуре от 5 до 35 градусов тепла по Цельсию. Относительная влажность воздуха должна быть в пределах 35-90%. В атмосфере должны отсутствовать водяные брызги, пыль и тому подобное. Если это не предоставляется возможным, используют специальные корпуса. Хотя по отношению к температуре необходимо сказать, что самые передовые образцы могут выдерживать диапазон с -40 до +40 градусов, что смотрится весьма недурно в наших погодных условиях. Но благодаря нагреву самой машины можно использовать и самые распространённые модели, хотя в случае с ними могут быть определённые проблемы с быстрым запуском (возможно, перед активацией придётся подождать).
Что требуется для установки подсветки
Для начала стоит разобраться с тем, что различают подсветку крышки автомобильного багажника, которая фактически устанавливается снаружи, и подсветки самой полости багажного отсека. Во втором случае излучатели света монтируются непосредственно внутри авто.
В случае с крышкой большую популярность завоевала динамическая дублирующая подсветка для багажника. Он может повторять основные сигналы задних фонарей транспортного средства, создаёт ощущения движения и динамики. Выглядит довольно оригинально и необычно. Но служит скорее для эстетики, поскольку не помогает подсвечивать багажное пространство в авто.
Детали для самостоятельного создания устройства
Один только прибор монтировать не рекомендуется. Для обеспечения устойчивости и эффективности его работы понадобятся различные компоненты. Если говорить о самом устройстве и его применении, то стабилизатор напряжения 12 вольт в авто, как правило, используется для работы с подсветкой. Он позволяет избавиться от моргания и позволяет сделать свечение равномерным. Для этого нам понадобятся:
- Конденсаторы SMD ёмкостью на 0,1 и 0,33 микрофарад.
- Стабилизатор напряжения (12 вольт, 1,5 А).
- Радиатор для охлаждения;
- Предохранитель на 1,6 А;
- Крепления для проводов платы;
- По желанию можно взять ещё 2 электролитических конденсатора на 220 мкФ и припаять их на вход и выход стабилизатора.
Стоимость данного устройства составит максимум несколько сотен рублей (в зависимости от того, где все необходимые детали будут покупаться).
Подбор готового трансформатора
Если есть готовый трансформатор с подходящей по току и напряжению вторичной обмоткой, можно попробовать подобрать готовый. Например, в серии ТПП есть подходящие изделия с напряжением вторичных обмоток, близким к 12 вольтам.
Трансформатор | Обозначение выводов вторичной обмотки | Напряжение, В | Допустимый ток, А |
ТПП48 | 11-12, 13-14, 15-16, 17-18 | 13,8 | 0,27 |
ТПП209 | 11-12, 13-15 | 11,5 | 0,0236 |
ТПП216 | 11-12, 13-14, 15-16, 17-18 | 11,5 | 0,072 |
Плюс этого решения – минимальная трудоемкость и надежность заводского исполнения. Минус – трансформатор содержит и другие обмотки, габаритная мощность рассчитана и на их нагрузку. Поэтому в массогабаритных показателях такой трансформатор будет проигрывать.
Регулируемый стабилизатор напряжения для зарядного устройства
Зарядное устройство для автомобильных аккумуляторов — незаменимая вещь, которая должна иметься у каждого автолюбителя, не зависимо от того, на сколько аккумулятор хорош, поскольку подводить он может в самую неудобную минуту.
Конструкции многочисленных зарядных устройств мы неоднократно рассматривали на страницах сайта. Зарядное устройство по идее ничто иное как блок питания со стабилизацией тока и напряжения. Работает просто — мы знаем, что напряжение заряженного автомобильного аккумулятора около 14-14,4 Вольт, на зарядном устройстве нужно выставить именно это напряжение, дальше выставить желаемый ток заряда, в случае кислотных стартерных АКБ это десятая часть емкости аккумулятора, например — аккумулятор 60 А/ч, заряжаем его током 6 Ампер.
Регулируемый стабилизатор напряжения для зарядного устройства
В итоге по мере заряда аккумулятора ток будет падать и со временем примет нулевое значение — как только аккумулятор заряжен. Такая система используется во всех зарядных устройствах, процесс заряда не нужно постоянно контролировать, поскольку все выходные параметры зарядного устройства стабильны и не зависят от перепадов сетевого напряжения.
Исходя из того становиться ясно, что для постройки зарядного устройства нужно иметь три узла.
1) Понижающий трансформатор либо импульсный источник питания плюс выпрямитель2) Стабилизатор тока3) Стабилизатор напряжения
С помощью последнего задается порог напряжения, до которого будет заряжаться аккумулятор и сегодня мы поговорим именно о стабилизаторе напряжения.
Система прсота до безобразия, всего 2 активных компонентов, минимальные затраты, ну а сборка займет не более 10 минут при наличии всех компонентов.
Что мы имеем . полевой транзистор в качестве силового элемента, регулируемый стабилитрон, который задает напряжение стабилизации, это напряжение можно выставить вручную, с помощью переменного (а лучше подстроечного, многооборотного) резистора 3,3кОм. На вход стабилизатора можно подавать напряжение до 50 Вольт, на выходе уже получаем стабильное напряжение нужного номинала.
Минимальное возможное напряжение 3Вольт (зависит от полевого транзистора) дело в том, что для того, чтобы полевой транзистор открылся на его затворе нужно иметь напряжение выше 3-х вольт (в некоторых случаях и больше) кроме полевых транзисторов, которые предназначены для работы в цепях с логическим уровнем управления.
Схема подключения на базе LM2940CT-12.0
Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.
Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.
А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.
Включение через габариты или ближний свет
Второй вариант схемы подключения ДХО предполагает задействовать цепь питания габаритной лампочки. Для этого плюсовой провод от ходовых огней напрямую соединяют с «+» от аккумулятора. В свою очередь, минусовой провод соединяют с «+» габаритного огня, который в данный момент электрически нейтрален. В результате образуется следующий путь протекания тока: от «+» аккумулятора через светодиоды к габариту, а затем через лампочку на корпус, который служит минусом всей цепи. Из-за малого потребления тока (десятки мА) светодиоды начинают светиться, а спираль лампы остаётся погашенной. Если водитель включит габаритные огни, то на плюсе габарита появляется +12 В, потенциалы на проводах ДХО выравниваются и светодиоды гаснут. Схема переходит в штатный режим, то есть ток течёт через лампочки габаритных огней.
В данном схемотехническом решении имеется несколько недостатков:
- ходовые огни остаются в работе при выключенном двигателе, что противоречит действующим правилам;
- схема не будет работать, если в габаритах тоже установлены светодиоды;
- схема не будет корректно работать, если в ДХО размещены мощные SMD светодиоды, номинальный ток которых соизмерим с током лампочки;
- с целью безопасности необходимо дополнительно устанавливать предохранитель.
Данный способ подключения можно усовершенствовать, соединив плюсовой провод LED-модуля не с «+» аккумулятора, а с «+» замка зажигания, тем самым избавиться от первого недостатка. Некоторые автомобилисты используют схемы включения ходовых огней через лампу ближнего света. То есть при включении ближнего света, ДХО автоматически гаснут, а в остальных случаях работают. Помимо вышеприведенных недостатков, данный способ не соответствует ГОСТу Р 41.48-2004 и ПДД.
Вы здесь
Главная › Инженеру-конструктору › 3. Электрооборудование, электроустановки › 3. Раздел 3.
Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5 и регулирующий транзистор V6. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения Uн и максимального тока нагрузки Iн. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем — выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.
1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып) при заданном выходном (Uн):
Uвып = Uн + 3,
Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып.
2. Рассчитывают максимально рассеиваемую транзистором мощность:
Рmах = 1,3 (Uвып — Uн) Iн,
3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax, предельно допустимое напряжение между эмиттером и коллектором — больше Uвып, а максимально допустимый ток коллектора — больше Iн.
4. Определяют максимальный ток базы регулирующего транзистора:
Iб.макс = Iн / h21Э min,
где: h21Эmin — минимальный коэффициент передачи тока выбранного (по справочнику) транзистора..
5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max.
6. Подсчитывают сопротивление резистора R1:
R1 = (Uвып — Uст) / (Iб max + Iст min),
Здесь R1 — сопротивление резистора R1, Ом; Uст — напряжение стабилизации стабилитрона, В; Iб.max — вычисленное значение максимального тока базы транзистора, мА; Iст.min — минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА). .
7. Определяют мощность рассеяния резистора R1:
PR1 = (Uвып — Uст)2 / R1,
Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности — такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор V7 малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в h21Э раз и применить, соответственно, маломощный стабилитрон.
В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.