Двигатель gdi
Содержание:
- Особенности устройства
- Основные преимущества
- Краткое описание
- 4G93 — двигатель Митсубиси Галант 1.8 литра
- Двигатель Gdi — Что Это, Хорошо Или Плохо?
- Сгорание ультрабедной смеси
- Реализация
- 4G93 — двигатель Митсубиси Галант 1.8 литра
- Преимущества
- GDi двигатель, разбираемся, что за зверь такой
- Профилактика неисправностей моторов GDI
Особенности устройства
Уже было примерно рассказано, что же такое двигатели GDI и в чём их ключевая особенность. Но это не позволяет в полной мере понять суть мотора и особенности его устройства.
Исходя из расшифровки, вы поняли, что значит двигатель GDI и что в моторе используется комбинированная система, характерная для бензиновых и дизельных ДВС. Это своего рода смесь двух разных моторов, что означает получение определённого преимущества перед конкурентами.
Не совсем очевидно для некоторых автомобилистов, что такое двигатель GDI и в чём его особенность на практике. Ключевым нюансом можно назвать факт работы на обеднённой смеси, образующейся в движке при небольших нагрузках. К ним относят равномерную езду со скоростью не более 120 километров в час. Но когда нагрузка повышается, система автоматически переходит на работу классической системы впрыска. Тем самым удаётся добиться лучших показателей экологичности и экономичности, что для многих становится решающим фактором при выборе.
Ещё стоит заметить, что в настоящее время выпускаются турбо версии GDI, которые дополнительно получили в своей конструкции турбонагнетатель. С его помощью удалось повысить мощность и производительность, но параллельно сохранить способность расходовать небольшое количество топлива в сравнении с конкурентами. А что такое турбо в движке, наверняка знает каждый. Двигатель GDI в пару с турбокомпрессором позволяет получить превосходный результат.
Среди автолюбителей существует устойчивое мнение, что первыми производителями моторов типа GDI является японская компания Mitsubishi. Но в действительности это не так. Первый двигатель с подобной системой комбинированного впрыска устанавливали на гоночную версию немецкого автомобиля W196 производства компании Mercedes.
Через некоторое время в японской компании задействовали систему впрыска, основанную на электронном управлении. Тем самым им удалось добиться образования обеднённой топливовоздушной смеси при работе мотора на малых нагрузках.
Впервые автомобили производства Mitsubishi с моторами GDI появились в продаже только в 1996 году. С того времени двигатели прошли через целый ряд изменений и модернизаций, поскольку первые образцы обладали широким перечнем недочётов.
Справедливости ради нужно добавить, что сама аббревиатура GDI используется именно японским автопроизводителем Mitsubishi. В арсенале других компаний также есть моторы с аналогичной системой, только выпускают они их с иными маркировками. Французский автоконцерн Renault использует понятие IDE, у Mercedes это CGI, а машины от компании Toyota могут оснащаться двигателями D4.
Основные преимущества
Изучив плюсы и минусы двигателей GDI, можно сделать некоторые выводы относительно этих силовых установок и используемой системы подачи топлива.
Все свои ключевые преимущества мотор получает именно от возможности работать на более бедной смеси при малых и средних нагрузках. Изменение соотношения топлива и воздуха позволяет сократить количество потребляемого топлива. Как показали исследования, в городском цикле при длительной работе на примерно одинаковых оборотах расход падает на 20-25%. Но аналогичных преимуществ на трассе, когда повышается скорость и нагрузка на двигатель, GDI уже не получает. Здесь расход остаётся на уровне обычных инжекторных систем.
Ещё одним достоинством считается процесс смесеобразования, происходящий внутри камеры сгорания. Любой специалист по ремонту и обслуживанию двигателей скажет, что процесс сгорания в цилиндрах всегда происходит неравномерно. Большее количество горючего сгорает около свечи. А вот на дальних участках горючее может не догорать, в результате чего остатки выходят через выхлопную систему.
GDI лишены этого недостатка, как и современные моторы типа TSI. Здесь используется технология послойного впрыска. В результате это позволяет за 1 такт впрыскивать до 5 порций топлива, формирующие неоднородную смесь в цилиндрах, учитывая конкретные особенности горения. Это помогает снижать расход, уменьшать токсичность выделяемого выхлопа, а также поддерживать стабильность на малых и средних оборотах двигателя.
Особый процесс образования смеси формирует ещё одно преимущество, которое выражается в виде увеличения показателей мощности и тяги. Прирост этих параметров составляет около 10-15%.
Дополнительно GDI характеризуются меньшим количеством образующегося нагара, что автоматически продлевает срок службы множества составляющих двигателя. При грамотной эксплуатации масло также сохраняет свои свойства вплоть до предусмотренного производителем срока замены.
Соблюдая все правила и условия эксплуатации, снижается вероятность возникновения серьёзных неисправностей, что положительно сказывается на долговечности двигателя и уменьшении финансовых затрат на эксплуатацию автомобиля, оснащённого GDI.
Краткое описание
Для определения атрибутов текста и изображения, которые выводятся на экран или принтер, используется программный объект под названием «контекст устройства» (Device Context, DC). DC, как и большинство объектов GDI, инкапсулирует подробности реализации и данные в себе и к ним нельзя получить прямой доступ.
Для любого рисования нужен объект HDC (Handle DC). При выводе на принтер HDC получается вызовом CreateDC, и на нём вызываются специальные функции для перехода на новую страницу печатаемого документа. При выводе на экран также можно использовать CreateDC, но это приведёт к рисованию поверх всех окон вне их границ, потому обычно для рисования на экране используются вызовы GetDC и BeginPaint, принадлежащие уже не GDI, а USER, и возвращающие контекст, ссылающийся на регион отсечения окна.
Функциональность:
- вывод одними и теми же вызовами на экран, принтер, «экран в памяти» (доступный приложению по указателю и созданный им bitmap в памяти, также возможно выделение bitmapов в памяти видеокарты — CreateCompatibleBitmap — и рисование на них, такие битовые карты не доступны по указателю, но дальнейшая перерисовка с них на физический экран происходит очень быстро без нагрузки процессора и шины, и особенно быстро в случае Remote Desktop).
- вывод в метафайл — запоминание последовательности команд рисования в файле, который можно «проиграть» заново, векторный графический файл .wmf есть именно этот метафайл с небольшим дополнительным заголовком в начале.
- вывод текста различными шрифтами, в том числе TrueType и OpenType, а также шрифтами, вшитыми в принтер (при изображении документа на экране используется ближайший похожий программно реализованный шрифт). Буквы всегда заливаются одним цветом («текущий цвет»), промежутки между ними либо остаются прозрачными, либо же заливаются другим цветом («текущий цвет фона»). Не поддерживается расположение букв по кривой.
- богатый набор операций с битовыми картами (битмапами), включая масштабирование, автоматическое преобразование из типичных форматов в текущий формат экрана без усилий со стороны программиста (StretchDIBits), рисование на битмапах нескольких типичных форматов, находящихся в памяти, и огромное количество логических операций комбинирования цветов 2 битмапов — уже имеющегося на устройстве назначения и вновь рисуемого.
- богатый набор операций векторной графики (примерно тот же, что в PostScript, но используется другой вид кривых). Проводимая линия имеет атрибуты — толщину, рисунок пунктира и цвет (собраны вместе в т. н. объекте PEN) и способ сглаживания углов многоугольников. Заливка может быть одноцветной, одной из штриховок на выбор или же битмапом 8 на 8 (эти атрибуты собраны в «объекте BRUSH»). В Windows NT также появились кривые Безье.
- все цвета в вызовах — всегда в RGB, независимо от системы цветов текущего устройства. Исключение — отдельные пикселы внутри битмапов, которые могут быть и в виде, определённом устройством.
- поддержка регионов отсечения и всех основных логических операций над ними. Координаты в них — 16-битные целые (что ограничивало размер экрана Windows, даже довольно поздних версий, до 32K пикселов).
- поддержка матрицы поворотов/растяжений — World Transform, не поддерживается для регионов отсечения, только для векторной графики.
4G93 — двигатель Митсубиси Галант 1.8 литра
Технические характеристики 1.8-литрового бензинового двигателя Митсубиси 4G93, надежность, ресурс, отзывы, проблемы и расход топлива.
1.8-литровый двигатель Митсубиси 4G93 выпускался японской компанией с 1991 по 2014 годы и ставился не только на многие ее модели, но и на автомобили Вольво, Протон либо Брильянс. Мотор предлагали в версии с карбюратором, инжектором, прямым впрыском и турбонаддувом.
В линейку 4G9 также входят двс: 4G91, 4G92 и 4G94.
Модификация: 4G93 carburetor SOHC
Точный объем | 1834 см³ |
Система питания | карбюратор |
Мощность двс | 110 л.с. |
Крутящий момент | 154 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 1 |
Примерный ресурс | 300 000 км |
Модификация: 4G93 MPI SOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 120 л.с. |
Крутящий момент | 159 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 9.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 2/3 |
Примерный ресурс | 350 000 км |
Модификация: 4G93 MPI DOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 140 л.с. |
Крутящий момент | 167 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 375 000 км |
Модификация: 4G93T MPI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 195 — 215 л.с. |
Крутящий момент | 270 — 285 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 275 000 км |
Модификация: 4G93 GDI DOHC
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 120 — 150 л.с. |
Крутящий момент | 175 — 180 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 12 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 250 000 км |
Модификация: 4G93T GDI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 160 — 165 л.с. |
Крутящий момент | 220 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 225 000 км |
На примере Mitsubishi Galant 1.8 1995 года с механической коробкой передач:
Город | 9.7 литра |
Трасса | 5.7 литра |
Смешанный | 7.4 литра |
Mitsubishi
Carisma DA | 1995 — 2004 |
Colt CA | 1992 — 1996 |
Galant E50 | 1992 — 1996 |
Galant EA | 1996 — 2006 |
Lancer CB | 1991 — 1996 |
Lancer CK | 1995 — 2003 |
Lancer CS | 2000 — 2007 |
Pajero Pinin H67 | 1998 — 2007 |
Space Wagon N30 | 1991 — 1998 |
Space Star DG0 | 1998 — 2005 |
Двигатель Gdi — Что Это, Хорошо Или Плохо?
Двигатель GDI
(Gasoline Direct Injection), что можно перевести как «двигатель с непосредственным впрыском топлива», то есть, топливо на таком двигателе впрыскивается не во впускной коллектор, как на всех остальных двигателях, а прямо в цилиндры двигателя.
На данный момент автомобили с двигателями системы GDI выпускают фирмы: Mitsubishi (6G-74, 4G-93, 4G-73), Toyota (3S-FSE, 1AZ-FSE), Nissan (3.0-litre Engines VG30dd), BOSCH (система Moronic MED7).
Первое
. основное и главное, что надо бы уяснить для себя владельцам таких автомобилей — это качество топлива, которое вы будете заливать в топливный бак. Оно должно быть «самым-самым»: высокооктановым и чистым (по-настоящему высооктановым и по-настоящему чистым). Естественно, совершенно не допускается применения ЭТИЛИРОВАННОГО бензина. Так же не стоит злоупотреблять различного рода «присадками и очистителями», «повышателями октанового числа» и так далее и тому подобное.
И причиной этого запрета являются сами принципы «построения» топливных насосов высокого давления, то есть принципы «сжимания и нагнетания топлива». Например, на двигателе 6G-74 GDI в этом участвует клапан мембранного типа, а на двигателе 4G-94 GDI — целых СЕМЬ маленьких плунжеров, расположенных в специальной «обойме» похожей на револьверную и работающих по сложному механическому принципу.
Если в топливе будут посторонние примеси или, не дай Бог, «обыкновенная» грязь, то, само собой разумеется, что через некоторое время эксплуатации топливный насос высокого давления просто-напросто «сядет», то есть, уже не будет нагнетать топливо в вихревые форсунки с нужным давлением.
Конечно, конструкторами предусмотрена очистка топлива, которая имеет несколько ступеней:
· Первая очистка топлива производится «сеточкой» топливоприемника топливного насоса, расположенного непосредственно в топливном баке.
· Вторая очистка топлива осуществляется «обычным» топливным фильтром (на Mitsubishi он располагается под днищем автомобиля, на Toyota в баке).
· Третья очистка топлива происходит при поступлении топлива в топливный насос высокого давления: на «входе» топливопровода стоит «сеточка — стакан», диаметром 4 мм и высотой 9мм.
· Четвертая очистка топлива осуществляется при ВЫХОДЕ топлива из «топливной рейки» обратно в бак — конструктивно «выход» топлива осуществляется опять же через корпус топливного насоса высокого давления: там стоит такая же «сеточка-стакан».
Первым «звоночком» для владельца двигателя GDI о том, что с его двигателем «что-то не так» становится снижение мощности и приемистости, а если и на это он не обратит внимание, то далее, через некоторое время двигатель начинает отказываться заводиться. Необходимое примечание: именно на этом этапе владельцу двигателя GDI надо все бросать и «лететь» на СТО занимающуюся ремонтом таких топливных насосов высокого давления, потому что в этом случае что-то еще можно будет поправить и хоть немного, но восстановить
Необходимое примечание: именно на этом этапе владельцу двигателя GDI надо все бросать и «лететь» на СТО занимающуюся ремонтом таких топливных насосов высокого давления, потому что в этом случае что-то еще можно будет поправить и хоть немного, но восстановить.
Если у вас все же двигатель GDI и «деваться некуда», то единственное, что можно посоветовать — регулярно, через несколько тысяч километров производить полную очистку топливного насоса высокого давления в специализированной мастерской.
Сгорание ультрабедной смеси
В обычных двигателях МРI существовали пределы обеднения смеси из-за больших вариаций характеристик сгорания. Однако стратифицированная смесь в двигателе GDI позволила значительно уменьшить воздушно-топливное отношение, не приводя к худшему сгоранию. Например, в период холостого хода, когда сгорание является наименее активным и непостоянным, двигатель GDI поддерживает устойчивое и быстрое сгорание даже чрезвычайно бедной смеси с отношением «воздух-топливо» 40:1 (55:1 с включением режима EGR). На рисунке показана разница в работе между GDI и обычной многоточечной системой впрыска.
Реализация
В Windows 9x и более ранних реализована в 16-битной GDI.DLL, которая, в свою очередь, подгружает выполненный в виде DLL драйвер видеокарты. Драйвер видеокарты первоначально и был обязан реализовать вообще всё рисование, в том числе рисование через битмапы в памяти в формате экрана. Позже появилась DIBENG.DLL, в которой было реализовано рисование на битмапах типичных форматов, драйвер был обязан пропускать в неё все вызовы, кроме тех, для которых он задействовал аппаратный ускоритель видеокарты.
Драйвер принтера подгружался таким же образом и имел тот же интерфейс «сверху», но «снизу» он вместо рисования в памяти/на аппаратуре генерировал последовательности команд принтера и отсылал их в объект Job. Эти команды, как правило, были либо двоичные и не читаемые человеком, либо PostScript.
В Windows NT GDI была полностью переписана с нуля заново, причём на C++ (по слухам, у Microsoft тогда не было компилятора этого языка и они использовали cfront). API для приложений не изменился (кроме добавления кривых Безье), для драйверов — обёртки на языке Си вокруг реализованных на C++ внутренностей (вроде BRUSHOBJ_pvGetRbrush).
Сама GDI была размещена сначала в WINSRV.DLL в процессе CSRSS.EXE, начиная с NT4 — в win32k.sys. Драйверы загружались туда же. DIBENG.DLL была переписана заново и перенесена туда же, как совокупность вызовов EngXxx — EngTextOut и другие. Логика взаимодействия драйвера-GDI-DIBENG осталась примерно та же.
GDI32.DLL в режиме пользователя реализована как набор специальных системных вызовов, ведущих в win32k.sys (до NT4 — как обёртки вокруг вызова CsrClientCallServer, посылавшего сообщение в CSRSS.EXE).
В Windows Vista появилась модель драйверов WDDM, в которой была отменена возможность использования аппаратуры двухмерной графики. При использовании WDDM все GDI-приложения (то есть все обычные системные части Windows UI — заголовки и рамки окон, рабочий стол, панель задач и другое) используют GDI-драйвер cdd.dll (Canonical Display Driver), который рисует на некоторых битмапах в памяти, своих для каждого окна (содержимое окна стало запоминаться в памяти, до того Windows никогда так не делала и всегда перерисовывала окна заново, кроме неких специальных окон с флагом CS_SAVEBITS). Изображения из cdd.dll извлекаются процессом dwm.exe (Desktop Window Manager), который является Direct3D-приложением и отрисовывает «картинки окон» на физическом экране через Direct3D.
Сам же WDDM-драйвер поддерживает только DirectDraw и Direct3D и не имеет отношения ни к GDI, ни к win32k.sys, сопрягаясь с модулем dxgkrnl.sys в ядре.
4G93 — двигатель Митсубиси Галант 1.8 литра
Технические характеристики 1.8-литрового бензинового двигателя Митсубиси 4G93, надежность, ресурс, отзывы, проблемы и расход топлива.
1.8-литровый двигатель Митсубиси 4G93 выпускался японской компанией с 1991 по 2014 годы и ставился не только на многие ее модели, но и на автомобили Вольво, Протон либо Брильянс. Мотор предлагали в версии с карбюратором, инжектором, прямым впрыском и турбонаддувом.
В линейку 4G9 также входят двс:
4G91,
4G92 и
4G94.
Модификация: 4G93 carburetor SOHC
Точный объем | 1834 см³ |
Система питания | карбюратор |
Мощность двс | 110 л.с. |
Крутящий момент | 154 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 1 |
Примерный ресурс | 300 000 км |
Модификация: 4G93 MPI SOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 120 л.с. |
Крутящий момент | 159 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 9.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 2/3 |
Примерный ресурс | 350 000 км |
Модификация: 4G93 MPI DOHC
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 140 л.с. |
Крутящий момент | 167 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 375 000 км |
Модификация: 4G93T MPI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | инжектор |
Мощность двс | 195 — 215 л.с. |
Крутящий момент | 270 — 285 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 8.5 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-92 |
Экологический класс | ЕВРО 3 |
Примерный ресурс | 275 000 км |
Модификация: 4G93 GDI DOHC
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 120 — 150 л.с. |
Крутящий момент | 175 — 180 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 12 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ремень |
Фазорегулятор | нет |
Турбонаддув | нет |
Какое масло лить | 3.5 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 250 000 км |
Модификация: 4G93T GDI DOHC TURBO
Точный объем | 1834 см³ |
Система питания | прямой впрыск |
Мощность двс | 160 — 165 л.с. |
Крутящий момент | 220 Нм |
Блок цилиндров | чугунный R4 |
Головка блока | алюминиевая 16v |
Диаметр цилиндра | 81 мм |
Ход поршня | 89 мм |
Степень сжатия | 10 |
Особенности двс | нет |
Гидрокомпенсаторы | да |
Привод ГРМ | ременной |
Фазорегулятор | нет |
Турбонаддув | да |
Какое масло лить | 3.6 литра 5W-30 |
Тип топлива | АИ-95 |
Экологический класс | ЕВРО 4 |
Примерный ресурс | 225 000 км |
На примере Mitsubishi Galant 1.8 1995 года с механической коробкой передач:
Город | 9.7 литра |
Трасса | 5.7 литра |
Смешанный | 7.4 литра |
Carisma DA | 1995 — 2004 |
Colt CA | 1992 — 1996 |
Galant E50 | 1992 — 1996 |
Galant EA | 1996 — 2006 |
Lancer CB | 1991 — 1996 |
Lancer CK | 1995 — 2003 |
Lancer CS | 2000 — 2007 |
Pajero Pinin H67 | 1998 — 2007 |
Space Wagon N30 | 1991 — 1998 |
Space Star DG0 | 1998 — 2005 |
S40 | 1998 — 2004 |
V40 | 1998 — 2004 |
Wira | 1993 — 2009 |
Putra | 1996 — 2004 |
BS4 | 2006 — 2014 |
BS6 | 2000 — 2010 |
Модификации GDI известны частыми капризами системы прямого впрыска топлива
Проблемой всех версий мотора служит быстрый выход из строя гидрокомпенсаторов
При загрязнении регулятора холостого хода двигатель начинает глохнуть сам по себе
На пробегах более 150 тысяч км обычно начинается масложор из-за залегания колец
Если прозевать уровень масла, то весьма высока вероятность проворота вкладышей
Преимущества
Итак, давайте рассмотрим плюсы данных силовых агрегатов:
- Экономия топлива. Эта характеристика достигается за счет образования более бедной смеси, о чем говорилось выше. Так, при отсутствии нагрузок двигатель работает на бедной смеси. Однако, когда нужно использовать весь потенциал, состав ее меняется на нормальный. За счет двухступенчатой подачи топлива машина экономит порядка 25 процентов на холостых оборотах. Если брать обычную езду, то такой мотор будет расходовать примерно на 10 процентов меньше топлива, нежели тот, что оснащен распределенным впрыском.
- Правильное горение топлива. Специалисты отмечают, что наиболее качественное воспламенение и горение смеси будет в том случае, если топливо находится в непосредственной близости к свече. Так, в цилиндрах бензин сгорает полностью, и отдача от этого максимальная. Также стоит отметить технологию послойного непосредственного впрыска FSI. Она применяется на автомобилях марки «Фольксваген». Впоследствии эту технологию подхватили и другие производители, в том числе и «Киа». Двигатели GDI корейского производства отличаются высокой производительностью и имеют широкую полку крутящего момента, чего нет у простых инжекторных моторов.
- Меньшая токсичность выхлопа. Эта характеристика тесно связана с двумя предыдущими. Отзывы специалистов говорят, что моторы с непосредственным впрыском выбрасывают намного меньше вредных веществ, нежели их аналоги (особенно на холостых оборотах).
- Мощность. Благодаря более правильному горению с одного и того же объема инженерам удалось снять на 10 процентов больше мощности, нежели от ДВС с распределенным впрыском. Также моторы GDI отличается более высокой степенью сжатия. Это положительно сказывается на крутящем моменте.
- Меньшее количество нагара. Как отмечают отзывы, при работе данные моторы не выделяют существенный нагар. Масляные каналы не закупориваются продуктами сгорания. Соответственно, служат эти двигатели дольше простых инжекторных. Также на моторах GDI более чистое масло.
Но не все так гладко, как кажется. У этих двигателей есть свои недостатки, о которых обязательно стоит поговорить.
GDi двигатель, разбираемся, что за зверь такой
Автопроизводители постоянно подсовывают потребителю новые, понятно-непонятные аббревиатуры, вчера мы разбирались с MPI, а сегодня продолжая тему двигателей поговорим о Японской Джедае. GDI расшифровывается как Gasoline Direct Injection переводя дословно получаем “непосредственный впрыск бензина”.
Система не новая, разрабатывалась еще далеко до 2000-х годов, а первый автомобиль с мотором GDI это Mitsubishi Galant начиная с 1997 года, двигатель 1.8, не мало проблем он доставил своим владельцам, но об этом поговорим позже.
Принцип GDI заключается в “симбиозе” бензинового и дизельного ДВС. В дизельном двигателе топливо подается непосредственно в камеру сгорания, где оно, смешиваясь с сжатым горячим воздухом начинает гореть. Непосредственный впрыск в бензиновых моторах “заимствует” у дизельных агрегатов расположение форсунки непосредственно в камере сгорания. Таким образом воздушно-топливная смесь формируется во время циклов впуска и сжатия. Открываются впускные клапана, в камеру сгорания попадает воздух и уже там происходит впрыск бензина и смешивание.
Тут у инженеров открывается новый горизонт настройки и регулировки смеси. Джедай имеет три основных режима впрыска: ULCM, SOM, two-stage mixing. Первый режим (ULCM) рассчитан на работу двигателя на максимально обедненной смеси, в этом режиме обеспечивается максимальная экономия топлива при условии плавного разгона и небольшого открытия дросселя, данный режим может поддерживать до скорости в 120 км/ч.
Второй режим (SOM) , в этом режиме смесь формируется в такой пропорции, чтобы топливо сгорало в полном объеме. Этот режим работает в условиях нагрузки: движение в горку, загруженный автомобиль, буксировка прицепа.
Третий режим , предлагался только для европейского рынка, данный режим рассчитан для резких стартов и максимальных нагрузок, например, обгон на немецких автобанах. В этом режиме топливо впрыскивается сначала на такте впуска, получается очень бедная невоспламеняемая смесь, так осуществляется дополнительное охлаждение, благодаря чему в камеру сгорания поступает больше воздуха. Во время сжатия происходит следующий впрыск и смесь становится максимально богатой.
Но это еще не все отличия , так как процесс подачи топлива должен осуществляться значительно быстрее, чем в классических схемах, где смесь формируется во впускном коллекторе. Для этого нужно повысить давление в топливной рампе с 3-х до 50-ти бар. В GDI используется два топливных насоса, классический в баке и насос высокого давления (ТНВД). Форсунка, например, в MPI, открывается на 3 мсек, а у GDI на 0.51 мсек, высокое давление позволяет двигателю ровно работать, расходую при этом значительно меньше топлива. Также для того, чтобы топливо с воздухом равномерно смешивалось, в GDI моторах используются специальные поршни.
Преимущества очевидны, меньше потерь и оседания топлива во впускном коллекторе = меньше расход топлива, более ровная работа на обедненных смесях, более гибкая настройка смеси = больше КПД, двигатель лучше едет с низких оборотов.
Недостатки связаны в первую очередь с топливной аппаратурой, если в Японии на качественном бензине это работает, то у нас свечи необходимо менять раз в 20 тысяч, избирательно относиться к заправкам, раз в 30 тысяч промывать форсунки.
Очень сильно покрывается сажей и копотью впускной коллектор и впускные клапана, это эффект от работы ЕГР. Если в том же MPI нагар и копоть смывались бензином, то в GDI остается лишь воздух. Поэтому в большинстве случаев на этих моторах ЕГР сразу глушат.
Источник
Профилактика неисправностей моторов GDI
Если автомобилист принял решение приобрести автомобиль, под капотом которого стоит система gdi, то продлить рабочий ресурс «сердечной мышцы» авто поможет несложная профилактика неполадок.
Так как эффективность системы подачи бензина напрямую зависит от чистоты распылителей, то первым делом, чему нужно уделять внимание – периодическая прочистка форсунок. Некоторые производители рекомендуют использовать для этого специальную присадку в бензин
Один из вариантов – Liqui Moly LIR. Вещество улучшает смазывающие качества топлива, предотвращая засорение распылителей. Производитель средства указывает, что присадка работает в условиях высоких температур, удаляет нагар и образование налета из смол.