Электромагнитная подвеска автомобиля
Содержание:
- Виды магнитных подвесок
- Сферические колеса на магнитной подвеске
- Недостатки электромагнитной подвески
- Демонстрация работы подвески
- Недостатки системы и сложности серийного производства
- Подвеска Bose и её особенности
- Виды электромагнитных подвесок
- Электромагнитная подвеска — что за зверь, и с чем его едят
- Зависимая подвеска
- Управление подвеской и реализация предоставленных преимуществ
- Недостатки электромагнитной подвески
- Исторический аспект
- Какие подвески бывают
- Разработана электромагнитная автомобильная подвеска Автомобиль Подвеска Техника Транспорт Лучшее 2011
- Немного о создателе магнитной подвески
Виды магнитных подвесок
Разные компании в разработке пошли по своим направлением, руководствуясь внутренними программами и конечными целями.
Принято выделять концепции подвесок от американской компании Delphi Corporation, известной шведской фирмы SKF и идею профессора Bose, чьё имя в названии компании стало синонимом особо качественных акустических систем для автомобилей.
Delphi
Относительная простота этой системы не означает её примитивность или плохую эффективность.
Несмотря на то, что электромагниты здесь управляют только свойствами амортизаторной жидкости, точное воздействие на мгновенную жёсткость демпфера даёт подвеске совершенно новые свойства. Скорость изменения характеристик амортизатора здесь многократно выше, чем у традиционных активных гидравлических демпферов.
Это достигается специальной жидкостью, которая настолько точно и эффективно меняет свою вязкость под воздействием управляющего тока электромагнита, что особой надобности в изменении жёсткости упругого элемента не возникает.
Сильная зависимость работы подвески именно от свойств амортизатора известна давно, их подбору уделяется особое внимание в автоспорте, а там каждая секунда пребывания автомобиля на трассе имеет решающее значение. Характеристики пружин не так важны
Измеряемые микронами габариты частиц позволяют добиться большого быстродействия за счёт минимальной инерции
То же качество обеспечивает и минимальное потребление тока обмотками магнитов, что очень важно для общей экономичности автомобиля и упрощения силовой электроники
Нужная информация снимается с датчиков подвески и других систем автомобиля, обрабатываясь в электронном блоке управления подвеской.
SKF
Шведская компания пошла другим путём
Не касаясь гидравлических амортизаторов, всё внимание было уделено скорости изменения характеристик упругого элемента
Для этого в него была интегрирована специальная капсула, содержащая два мощных электромагнита. Меняя их поле взаимодействия можно настолько быстро реагировать на ситуацию, что данное устройство способно выступать в роли как упругого, так и демпфирующего элементов.
Ведь суть демпфирования состоит в динамическом изменении жёсткости, вплоть до смены знака вектора силы с отталкивания на притяжение. Таким способом компьютер может погасить любые колебания, лишь бы хватило быстродействия и диапазона изменения силы взаимодействия электромагнитов. А это уже вопросы технологического исполнения.
Потребляемая мощность здесь значительно выше, чем у чисто статического режима работы электромагнитов гидравлических активных амортизаторов.
Но до неприемлемых величин она не возрастает, реально сравниваясь с более традиционными потребителями вроде климатической системы или электрического отопителя, а чтобы избежать полного отказа подвески в случае поломок электрооборудования в подвеске сохранены традиционные пружины, частично резервирующие электромагнитное оборудование.
Bose
Много занимавшийся акустикой профессор Bose ближе к концу 20 века увлёкся идеей создания идеальной автомобильной подвески. Неудивительно что исполнительный элемент немного напоминает сильно увеличенную электромагнитную систему большого динамического громкоговорителя.
Но реально общего тут лишь применение устройства, теоретически представляющего собой линейный электродвигатель. То есть если сравнить это с разработкой SKF, то количество полюсов электромагнитов увеличено во много раз. Они расположены на штоке и статоре устройства, напоминающего телескопический амортизатор.
Магнитная отдача узла достаточно велика, это позволило отделаться приемлемой мощностью управления, зато быстродействие таково, что получившийся «динамик» способен гасить любые процессы, от стационарных до колебательных, работая как пружина и как амортизатор.
Достаточно сформировать и подать на обмотки управляющий сигнал, например, аналогичный внешнему воздействию, но с повёрнутой на 180 градусов фазой. То есть полностью погасить нежелательные колебания, наложив на них такие же, но в противоположном направлении в каждый отдельно взятый момент времени.
Такая подвеска настолько эффективна, что её можно считать эталоном среди всех электромагнитных устройств. Подвеска может обеспечить уникально большой рабочий ход, порядка 20 сантиметров, что для гражданских автомобилей чрезвычайно много, отличную стабильность положения кузова, чёткие реакции на любой профиль на любой скорости, отсутствие клевков и кренов.
Первые же презентации системы на тестовых автомобилях Lexus буквально ошеломили автомобильных журналистов, хотя эти машины и в стандартном исполнении обладают высочайшей плавностью хода.
Сферические колеса на магнитной подвеске
Компания Goodyear, которая является производителем автомобильных покрышек с мировым именем, разработала дизайн сферической автомобильной покрышки, которая позволит автоматическим транспортным средствам перемещаться боком так же легко, как нынешние автомобили могут перемешаться вперед или назад. Применение подвески со сферическими колесами позволит избавиться от ограничений возможного направления движения, накладываемых традиционной конструкцией ось-колесо, которая остается практически неизменной уже почти 4 тысячи лет.
Концепт сферической подвески, получившей название Eagle-360, был продемонстрирован компанией Goodyear Tire & Rubber Company в рамках 86-го Международного Автосалона, который проходил в Женеве, Швейцария. К сожалению, представители компании Goodyear не предоставили никаких технических деталей, касательно конструкции подвески и трансмиссии автомобиля со сферическими колесами. Единственной доступной информацией является то, что для этого используется бесконтактная подвеска, использующая эффект магнитной левитации. И, судя по приведенным изображениям, сферические колеса полностью скрыты под элементами кузова автомобиля.
Недостатки электромагнитной подвески
Основных недостатков электромагнитной подвески два, причем один вытекает из другого и цепляет за собой еще один фактор. Самый главный минус такой подвески — это цена (примерно 200-250 тысяч рублей) и отсутствие серийного производства. Серийно не производится, потому что низкий уровень спроса из-за высокой цены, а цена высокая из-за штучного производства (можно сказать эксклюзив). Такой вот замкнутый круг. Эксперты утверждают, что снижению стоимости может способствовать появление новых технологий производства или внедрение более дешевых, но не менее эффективных материалов для изготовления подвески. Так или иначе, жаждущим поменять свою подвеску на электромагнитную, придется ждать или копить.
Демонстрация работы подвески
Прототипом для тестирования разработки стала модель Lexus LS400: один автомобиль был оснащен традиционной подвеской, другой получил Bose Suspension, которая управлялась процессором Pentium III с частотой 750 МГц.
Программное управление активной подвеской давало возможность корректировать её функционирование, а также создавать алгоритмы работы для разных дорожных условий. Боуз отказался от подвески, используемой в настоящее время компанией Mercedes-Benz, когда при прохождении поворотов кузов авто наклоняется, что, во-первых, оказывается неожиданным для пассажиров, а во-вторых, провоцирует водителя на создание опасных ситуаций ввиду переоценки возможностей транспортного средства.
В ходе презентации было продемонстрировано сравнение двух подвесок – традиционной, используемой автомобилестроительными компаниями, и новой, придуманной Боузом (для большей наглядности на автомобиле с подвеской Bose была предусмотрена кнопка, при нажатии которой происходило переключение между ними). Журналисты, находясь в салоне, могли прокатиться по дороге с ямами и неровностями: при включении режима заводской подвески в зеркала заднего вида чётко было видно, как кузов раскачивается, при активации подвески Bose кузов оставался неподвижным.
Финальным аккордом, окончательно поразившим присутствующих, стало преодоление деревянной планки, когда кузов, невзирая на значительную высоту препятствия, продолжал оставаться в неподвижности (серийная реализация опции не предполагалась, но её демонстрация была необходимой для привлечения внимания к технологии как представителей прессы, так и возможных будущих партнеров).
Недостатки системы и сложности серийного производства
В конце 2017 года корпорация Bose продала технологии производства электромагнитной подвески фирме ClearMotion. Новый владелец технических патентов значительно модифицировал конструкцию подвески и снабдил ее привычными упругими пружинами и амортизаторами. Единственным отличием от классической подвесной системы стал электрогидравлический элемент Activalve, который ускоряет отклик амортизатора на неровности дороги.
Подвеска ClearMotion
В настоящий момент технические разработки компании Амара Боуза применяются при серийном производстве кресел для грузовых автомобилей. Сиденья, оснащенные амортизационной системой Bose Ride, пользуются большой популярностью у профессиональных водителей. Некоторые идеи корпорации Боуза применяются американской компанией Cadillac, разработавшей подвесную систему Magnetic Ride Control. Устройства адаптивной подвески снабжаются двойными электромагнитными катушками, которые способны быстро изменять вязкость магнитореологического состава.
Подвеска Bose и её особенности
Обладая глубокими познаниями в сфере аудиотехники и понимая природу волн и колебаний, Боуз перенес имеющийся опыт в область автомобилестроения. Фактически профессор создал систему шумоподавления, но только в плане машин: придуманный им механизм гасил поступающие снаружи «колебания». Поняв, что идея имеет право на существование, через 3 года он создает отдельную команду для продолжения исследований, ведущихся втайне (внутри компании был образован отдел под названием Project Sound, что было сделано в целях конспирации – люди, не посвященные в детали проекта, могли подумать, что это очередное подразделение, занимающееся разработкой звуковых технологий).
В основе электромагнитной подвески Bose лежит мотор, питание которого обеспечивается за счёт усилителей, а его работой управляет микропроцессор. Мотор функционирует по принципу традиционной стойки амортизатора: он растягивает и сжимает конструкцию, но делает это за миллисекунды, в отличие от обычной пружины.
Именно эта особенность и отличает подвеску Bose Suspension от традиционной, работа которой ограничена физическими законами (в определенный момент времени пружинная подвеска перестаёт обеспечивать нужную скорость сжатия и разжатия, вследствие чего колебания начинают передаваться на кузов). Применение электромотора позволило решить проблему: его мощности с лихвой хватает для того, чтобы моментально откликаться на любую неровность, не позволяя колебаниям затрагивать кузов.
Применение подобной уникальной схемы требовало дополнительного питания, но и с этой проблемой удалось справиться опять же за счёт электромоторов, которые в процессе работы возвращали значительную часть затраченной ими энергии на усилители. Как показали проведённые исследования, такая организация работы подвески требует в 3 раза меньше энергии, чем автомобильный кондиционер.
Но на этом преимущества Bose Suspension System не заканчиваются: подвеска оказалась способной гасить даже мельчайшие неровности, проявляемые на уровне вибраций. Для этой цели были установлены демпферы, подавляющие микроколебания. Кроме того, механизм гарантировал ровное положение кузова как на неровностях, так и при совершении манёвров за счёт отсутствия раскачки при прохождении поворотов.
Работа над Suspensions Systems заняла долгих 24 года: публично представить проект Боуз решился лишь в 2004 году, однако даже тогда не позволил никому опробовать подвеску на практике. Но и без этого презентация произвела эффект разорвавшейся бомбы: никто не мог поверить, что кузов машины во время движения может оставаться полностью неподвижным вне зависимости от типа дороги.
Виды электромагнитных подвесок
С тех пор, как стало возможным использование электроники в использовании управления подвеской, конструкторы многих фирм стали заниматься разработкой уникальных систем в этом направлении и на сегодняшний день наиболее преуспели три:
- Bose;
- SKF;
- Delphi.
Bose электромагнитная подвеска
Изобретатель системы Bose известный математик и разработчик акустических систем, доктор Amar Bose. Еще 30 лет назад он начал разработку системы электронной подвески, а в настоящее время такие подвески уже реальность.
На серийных автомобилях они не используются ввиду их дороговизны, но на спортивных и VIP автомобилях довольно популярны.
Bose электромагнитная подвеска профессора Боуза работает как линейный электродвигатель, шток которого выполняет роль якоря. Якорь совершает возвратно-поступательные движения возле статора, расположенного в корпусе амортизатора.
Управление подвеской полностью осуществляет Электронный блок управления.
Амортизационный узел bose электромагнитной подвески позволил исключить упругий элемент, жидкостный амортизатор и поперечный стабилизатор. Все эти функции стал выполнять один элемент.
Блок управления подает напряжение на линейный электродвигатель, на штоке появляется сила, которая выталкивает шток с усилием до 380 кг. На четыре колеса в сумме приходится более 1,5 т., а это вес средней малолитражки.
С такой подвеской автомобиль выдерживает постоянный клиренс (высота автомобиля над дорогой), не зависимо от нагрузки.
Bose электромагнитная подвеска выполняет и роль пружины и роль амортизатора, то есть берет на себя нагрузку и демпфирующую отдачу. А также исключает по определению стабилизатор, потому что механически выравнивать левое с правым колесом нет необходимости, делает это электроника.
ЦПУ (центральный пульт управления) посылает на каждое колесо то напряжение, которое нужно в той или иной дорожной обстановке.
Автомобиль не делает продольных «клевков» при торможении и при разгоне. Не дает боковой крен. Благодаря идеальному распределению опорных сил, автомобиль становится максимально послушным и удивительно комфортным.
Проходя по неровностям дороги, этот линейный электродвигатель выполняет обратную функцию, то есть работает не как электродвигатель, а как генератор. Он преобразует возвратно-поступательные движения в электрическую и подает её обратно в электрическую сеть автомобиля.
Система SKF
Конструкция шведской компании SKF несколько иная. Они создали капсулу в которой расположены два электромагнита один против другого.По сути дела, это такая же стойка МакФерсон, только вместо гидравлического амортизатора установлена капсула с электромагнитами, управляющими из ЦПУ электронными мозгами.
Ток подается на магниты подается от ЦПУ исходя из дорожных условий и мгновенно изменяет его силу в зависимости от изменяющихся условий. Колесные датчики анализируют каждый бугорок и подают сигнал на центральный блок управления.
Конечно подвеска имеет классический вид, имеет пружину в подвеске, что явилось подстраховкой, когда вдруг электронная система выйдет из строя или по каким-то другим причинам будет отключена. Так же, автомобиль не будет проседать при длительной стоянке с отключенным аккумулятором.
Система Delphi
Компания Delphi придумала систему, которая напоминает обычный однотрубный амортизатор, только наполненный необычной жидкостью. Эта жидкость магнито-реологическая, то есть жидкость с магнитными частицами, размер которых составляет десять микрон и меньше.
Жидкость эта составляет одну треть от основного объема. Электромагнит расположен в головке поршня амортизатора и управляется ЦПУ.
Когда подается соответствующее напряжение на электромагнит, магнитные частицы активизируются и собираются, под воздействием магнитных полей, в структуры, которые меняют вязкость жидкости, соответственно меняя режим работы амортизаторов.
Также, как и в системе SKF, и в отличии от системы Bose, вид подвески напоминает классический вид и имеет упругий элемент.
Вот как продвинулась наука, мои дорогие читатели, и как фантастично работают новые изобретения. Вопрос другой, когда мы сможем ездить на автомобилях с такой подвеской.
Главное это скоро будет! Я верю в это и не перестаю удивляться гениальности человеческой мысли.
До встречи на блоге! Делитесь знаниями с близкими и удачи на дорогах!
Кстате, очень интересные статьи: Адаптивная подвеска, Пневматическая подвеска, Торсионная подвеска.
Электромагнитная подвеска — что за зверь, и с чем его едят
Главное отличие данной подвески от ее сестер — отсутствие вспомогательных элементов: торсионов, пружин, амортизаторов, стабилизаторов. Она представляет собой индивидуальную стойку на каждое колесо, управляемую электронным блоком и позволяющую контролировать состояние колес и кузова в режиме онлайн. Некоторые модели имеют стандартный комплект пружин и амортизаторов на случай неисправности автоматической системы. При отсутствии подачи электроэнергии, система автоматически переключается на механический режим через электромагниты.
Вместо привычных деталей магнитная подвеска оснащена электромагнитными клапанами или магнитно-реологической жидкостью. Основными ее компонентами являются:
- упругие детали, способные проводить силы, возникающие в вертикальной плоскости;
- элементы, отвечающие за перемещение колесной базы, взаимодействия колес и проводимость боковых и продольных сил;
- составляющие, направленные на гашение колебаний (амортизаторы).
В своей работе она отвечает за те же опции, что и ее вариации:
- обеспечивает гармоничную связь колес с кузовом;
- передает моменты и силы во время движения;
- гарантирует комфортное вращение колес относительно кузова;
- способствует плавности хода.
Чем проще подвеска, тем больше функций берет на себя каждый элемент. В современных конструкциях система распределения достаточно сложная и индивидуальная. Это обеспечивает более эффективное обеспечение безопасности, устойчивости, плавности хода и управляемости автомобилем.
Принцип работы электромагнитной подвески заключается во взаимодействии магнитного и электрического полей. Если механические конструкции осуществляют предназначение за счет пружин и других элементов, гидравлика — за счет рабочей жидкости, то здесь главную роль играют электромагниты. Управление ими происходит посредством электронного узла (через бортовой компьютер). Он снимает все данные со всего кузова, а затем направляет необходимые команды системе. Программа позволит анализировать не только состояние колес относительно кузова и дороги, но и характер дорожного полотна, а также уровень воздействия на автомобиль. Этот тип работы намного легче его механических и гидравлических вариаций.
Процесс протекает в дуэте с электродвижком, заменяющим обыкновенный амортизатор. Вопреки ожиданиям уровень электропотребления низкий из-за выработки электроэнергии во время обратного движения электромагнитов. Это делает подвеску экономичной.
Зависимая подвеска
Зависимая подвеска характеризуется зависимостью перемещения одного колеса моста от перемещения другого колеса.
Передача сил и моментов от колес на кузов при такой подвеске может осуществляться непосредственно металлическими упругими элементами – рессорами, пружинами или с помощью штанг – штанговая подвеска.
Металлические упругие элементы имеют линейную упругую характеристику и изготавливаются из специальных сталей, обладающих высокой прочностью при больших деформациях. К таким упругим элементам относятся листовые рессоры, торсионы и пружины.
Листовые рессоры на современных легковых автомобилях практически не применяются, за исключением некоторых моделей автомобилей многоцелевого назначения. Можно отметить модели легковых автомобилей, выпускавшиеся ранее с листовыми рессорами в подвеске, которые продолжают эксплуатироваться и в настоящее время. Продольные листовые рессоры устанавливались в основном в зависимой подвеске колес и выполняли функцию упругого и направляющего устройства.
На легковых автомобилях и грузовых или микроавтобусах применяются рессоры без подрессорников, на грузовых автомобилях – с подрессорниками.
Пружины как упругие элементы применяются в подвеске многих легковых автомобилей. В передней и задней подвесках, выпускаемых различными фирмами большинства легковых автомобилей применяются винтовые цилиндрические пружины с постоянными сечением прутка и шагом навивки. Такая пружина имеет линейную упругую характеристику, а необходимые характеристики обеспечиваются дополнительными упругими элементами из полиуретанового эластомера и резиновыми буферами отбоя.
На легковых автомобилях Российского производства в подвесках применяют цилиндрические винтовые пружины с постоянными сечением прутка и шагом в сочетании с резиновыми отбойными буферами. На автомобилях производителей других стран, например, БМВ 3-й серии в задней подвеске устанавливают бочкообразную (фасонную) пружину с прогрессивной характеристикой, достигаемой за счет формы пружины и применения прутка переменного сечения.
На ряде автомобилей для обеспечения прогрессивной характеристики применяется комбинация цилиндрических и фасонных пружин с переменной толщиной прутка. Фасонные пружины имеют прогрессивную упругую характеристику и называются «миниблоками» за небольшие размеры по высоте. Такие фасонные пружины применяют, например в задней подвеске автомобилей «Фольксваген», «Ауди», «Опель» и др. Фасонные пружины имеют различные диаметры в средней части пружины и по краям, а пружины «миниблок» имеют и различный шаг навивки.
Торсионы, как правило, круглого сечения применяются на автомобилях в качестве упругого элемента и стабилизатора.
Упругий крутящий момент передается торсионом через шлицевые или четырехгранные головки, расположенные на его концах. Торсионы на автомобиле могут быть установлены в продольном или поперечном направлении. К недостаткам торсионов следует отнести их большую длину, необходимую для создания требуемых жесткости и рабочего хода подвески, а также высокую соосность шлицов на концах торсиона. Однако следует отметить, что торсионы имеют небольшую массу и хорошую компактность, что позволяет успешно применять их на легковых автомобилях среднего и высокого классов.
Управление подвеской и реализация предоставленных преимуществ
Возможности магнитных механизмов в подвеске полностью раскрываются при организации системы датчиков, быстродействующем компьютере и хорошо проработанных программных принципах. Результаты просто поражают:
- плавность хода выше всяческих ожиданий;
- сложные реакции подвесок в поворотах, выделение загруженных и начавших приподниматься колёс;
- парирование клевков и подхватов кузова;
- полное гашение кренов;
- раскрепощение подвесок на сложном рельефе;
- решение проблемы неподрессоренных масс;
- совместная работа со сканирующими дорогу перед автомобилем камерами и радарами для упреждающих действий;
- возможность отработки навигационных карт, куда предварительно записан рельеф поверхности.
Ничего лучше магнитных подвесок пока не придумано. Процессы дальнейшей проработки и создание алгоритмов продолжаются, развитие идёт даже на автомобилях высших классов, где цена подобных устройств оправдывается. До применения на массовых шасси дело пока не дошло, но уже совершенно ясно, что будущее именно за такими системами.
Недостатки электромагнитной подвески
Основных недостатков электромагнитной подвески два, причем один вытекает из другого и цепляет за собой еще один фактор. Самый главный минус такой подвески — это цена (примерно 200-250 тысяч рублей) и отсутствие серийного производства. Серийно не производится, потому что низкий уровень спроса из-за высокой цены, а цена высокая из-за штучного производства (можно сказать эксклюзив). Такой вот замкнутый круг. Эксперты утверждают, что снижению стоимости может способствовать появление новых технологий производства или внедрение более дешевых, но не менее эффективных материалов для изготовления подвески. Так или иначе, жаждущим поменять свою подвеску на электромагнитную, придется ждать или копить.
Исторический аспект
Рено Логан Передняя Подвеска Ремонт Своими РукамиРено логан передняя подвеска ремонт своими руками
До начала 80-х годов технология магнитной подвески была лишь теорией. Но в 1982 году произошёл настоящий прорыв, положивший начало новой эре. Именно в этом году началась постройка первого в мире поезда, двигающегося на основе магнитной подвески.
Устройство получило название магнитоплан. Результаты первых тестов превзошли все ожидания, скорость, которую показал аппарат, превысила 500 километров в час. К сожалению, эти наработки были совершенно непригодны для использования в автомобилях.
Тем не менее ученые и инженеры со всего мира не могли так просто отказаться от тех преимуществ, которые давала магнитная подвеска поезда. Самым главным из всех было отсутствие трения.
Не имея возможности модернизировать все дороги, ученые сосредоточили своё внимание на работе над ходовой. Путём введения электромагнитных управляющих элементов, они смогли добиться серьёзного роста динамических характеристик и управляемости. Это стало началом внедрения магнитной подвески в современное производство
Это стало началом внедрения магнитной подвески в современное производство.
Магнитная подвеска управляется при помощи бортового компьютера. Как результат процесс вождения приобретает небывалую мягкость. Автомобиль хорошо держится на дороге. Это, в свою очередь, значительно повышает комфорт внутри салона.
Какие подвески бывают
В связи с особенностями конструкции подвески принято разделять на 3 вида: зависимая, независимая и полунезависимая подвеска
Зависимая подвеска
Подразумевает жесткое соединение противоположных колес, при котором перемещение одного колеса в поперечной плоскости влечет за собой перемещение другого. В состав моста автомобиля входит жесткая балка, заставляющая колеса двигаться параллельно. Изначально в качестве направляющих и упругих элементов использовались рессоры, но в современных автомобилях связующая колеса поперечина фиксируется двумя продольными рычагами и поперечной тягой.
Преимущества:
- невысокая стоимость
- легкость конструкции
- высокий центр поперечного крена
- постоянство развала и колеи
Другими словами, на ровной поверхности, не зависимо от раскачки, угол наклона колес относительно дороги не меняется, а машина имеет наилучшее сцепление с дорожным покрытием. На плохой дороге, к сожалению, это преимущество теряется, т. к. провал одного колеса влечет за собой провал и второго, в результате чего сцепление ухудшается.
Конструкция очень простая и надежная, потому широко используется для грузовых автомобилей и на задней оси легковых.
Полунезависимая
Включает в себя жесткую балку, которую торсионы удерживают на кузове. Эта конструкция делает подвеску относительно самостоятельной по отношению к кузову. Для примера можно изучить подвеску переднеприводного автомобиля ВАЗ.
Независимая подвеска
Предполагает автономную работу каждого колеса. Т.е. их перемещения не зависят друг от друга, что приводит к более плавному ходу. Независимая подвеска может быть как передней так и задней, и в свою очередь ее принято разделять на:
- Подвеска с качающимися полуосями — основным элементом конструкции выступают полуоси. При наезде на неровности колесо всегда сохранит перпендикулярное положение относительно полуоси.
- Подвеска с косыми рычагами — оси качания рычагов находятся под косым углом. Преимуществами такого вида прибора можно назвать уменьшение колебаний колесной базы и крена авто на поворотах.
- Подвеска на продольных рычагах — самый простой тип, среди независимых. Каждое колесо удерживается при помощи рычага, воспринимающего боковые и продольные усилия. Обычно рычаг крепится к кузову при помощи шарниров и обладает высокой устойчивостью. Недостаток такой подвески заключается в том, что на поворотах колеса наклоняются вместе с кузовом, создавая большой крен.
- С продольными и поперечными рычагами. Этот вид подвесок сложен в техническом плане и громоздок, поэтому слабо популярен (использовался на таких марках как Rover, Glas и т.д.).
- С двойными продольными и поперечными рычагами.
- Торсионно-рычажная подвеска — включает в свою конструкцию два продольных рычага и торсионную скручиваемую балку. Используется на задней оси переднеприводных автомобилей, в современном автомоделировании в основном на бюджетных китайских моделях. Преимуществом считается надежность и простота, а недостатком — излишняя жесткость, лишающая комфорта пассажиров заднего ряда.
- Подвеска МакФерсон — самая распространенная схема передней подвески современных автомобилей. Это обусловлено небольшой шириной, легкостью и простотой конструкции. Однако у такой подвески есть и существенный минус: высокое трение в амортизаторной стойке и, как следствие, снижение фильтрации дорожных шумов и неровностей.
- Гидропневматическая и пневматическая подвеска. Роль упругих элементов исполняют пневматические баллоны и гидропневматические элементы, объединенные в одно целое с системой гидроусилителя руля и гидравлической системой тормозов.
- Адаптивная подвеска отличается тем, что степень демпфирования амортизаторов изменяется в зависимости от качества дорожного полотна, параметров движения и запросов водителя. Результатом можно отметить повышенную маневренность и безопасность.
Все подвески имеют свои положительные характеристики и недостатки. Некоторые до сих пор широко используются, а какие-то давно не актуальны.
Разработана электромагнитная автомобильная подвеска Автомобиль Подвеска Техника Транспорт Лучшее 2011
Категории: Техника » Транспорт
Kinect может заменить мышку
Самовосстанавливающийся биобетон
Технология Flybrid KERS — топлива меньше, мощность выше
Подушка безопасности для мобильных гаджетов
В декабре прошлого года представитель Университета технологий Эйндховена (Eindhoven University of Technology, TU/e) в ходе конференции «Будущее электромобилей», проходившей в американском Сан-Хосе, сообщил о том, что его коллеги работают над новым видом автомобильной подвески, работа которой основана на использовании электромагнитов.
Категории и теги: Техника » Транспорт » Автомобиль, Подвеска, Электромагнит, Амортизатор.
За прошедшие c декабря месяцы исследователи подготовили действующий образец подвески, установленной на тестовый автомобиль, который будет демонстрироваться в ходе выставки AutoRAI, которая пройдет в столице Нидерландов с 13 по 23 апреля.
В преддверии выставки специалисты поделились некоторыми подробностями относительно своей разработки. В ходе стендовых испытаний было установлено, что использование электромагнитной подвески позволяет улучшить ездовые характеристики автомобиля не менее чем на 60%, в сравнении с классическими газонаполненными и масляными образцами, даже при условии, что последние посредством датчиков управляются бортовым компьютером. И хотя активной подвеской никого не удивить, ученые из Эйндховена отмечают, что электромагнитные амортизаторы способны реагировать на изменения в дорожном покрытии в разы быстрее своих гидравлических собратьев. Способность в течение долей секунды реагировать на изменение условий движения позволит не только повысить комфортность передвижения, но и выведет безопасность на новый уровень, отмечают исследователи.
Как видим, разработка основана на классической стойке макферсон, широко использующейся в современном автомобилестроении. При схожих с классическими образцами габаритах электромагнитная стойка включает в себя пружину, электромагнитный привод, блок управления и источник питания. В случае отказа батареи система продолжит выполнять все свои функции как чисто механическая. Подзарядка батарей, по задумке разработчиков, будет производиться за счет использования генерируемой во время движения автомобиля электроэнергии.
На данный момент система из двух независимых стоек проходит испытания на тестовом автомобиле. Каждое колесо с электромагнитными элементами управляется отдельно, но в ближайшее время ученые планируют подключить стойки к единому центру управления.
В создании опытного образца принимала участие шведская компания SKF, которая уже получила патент на разработку и планирует наладить серийное производство электромагнитных элементов подвески.
Теги: Автомобиль, Подвеска, Электромагнит, Амортизатор
Современная утилизация автомобилей с помощью шредера
В Британии хотят оборудовать все новостройки зарядками для электромобилей
Электромобили дешевле от ДВС уже в 2023 году
Дрифт на военном тягаче
Kinect может заменить мышку
Самовосстанавливающийся биобетон
Технология Flybrid KERS — топлива меньше, мощность выше
Подушка безопасности для мобильных гаджетов
Категория: Техника » Транспорт | 8-04-2011, 16:16 | Просмотров: 9244 |
Немного о создателе магнитной подвески
Амар Гопал Боуз
Амар Гопал Боуз — американский ученый и предприниматель, основавший корпорацию Bose. Компания производит и реализует профессиональную аудиотехнику (наушники, громкоговорители, колонки и пр.). Продукция американской корпорации используется во всем мире для проведения концертов, театральных представлений, богослужений и иных мероприятий. В 1956 году ученый получил звание профессора Массачусетского технологического института. В этом учебном заведении Боуз проработал более 45 лет. В 2007 году талантливый предприниматель попал в список Forbes с состоянием в 2 млрд долларов. Амар Боуз умер в 2013 году.